Protecting U.S. Maritime Interests Through Multi-Mission Integration

- Safety
 - Search & Rescue
 - Marine Safety
 - Ice Operations
 - Aids-to-Navigation
- Integration
 - Ports, Waterways, & Coastal Security
 - Drug Interdiction
 - Migrant Interdiction
- Security
 - Defense Readiness
 - Other Law Enforcement
- Stewardship
 - Marine Environmental Protection
 - Living Marine Resources
Dana A. Goward is the US Coast Guard's Director of Assessment, Integration and Risk Management. The Coast Guard by law is responsible for performing in eleven separate maritime safety, security and stewardship mission areas. Mr. Goward and his team unify these efforts into a single service performance plan and budget. He is also lead the Coast Guard's mission assessment and risk management programs, is Co-Chair of the DHS Geospatial, Position, Navigation and Timing Executive Committee, and serves as the DHS and Coast Guard Executive Agent for Maritime Domain Awareness.

He is a retired Coast Guard officer who, when on active duty, served afloat, as a federal magistrate, as a regional director of human resources, and as the director of the world's largest public safety and security boat operation. Most of his military career, however, was spent as a helicopter pilot and he was the commanding officer of the Coast Guard's air station in New Orleans. He is the recipient of the Air Medal and Helicopter Association International Igor Sikorsky Award for the rescue of two fishermen at the height of a hurricane; a commendation for his creation of the Coast Guard's helicopter rescue swimmer program; and the Legion of Merit for transformation of US Coast Guard boat operations.

Mr. Goward is a graduate of the US Coast Guard Academy, naval flight training, the Navy's Aviation Safety program, the Naval Postgraduate School, and holds a certificate in Human Performance from the University of New Orleans.
Strategic Intent to inform Budget and Acquisitions

November, 2008
Strategy → Budget → Mission Execution

11 Missions, 1 Plan, 1 Budget
DCO Management & Budget Process Flowchart

So simple a caveman could do it
Mission Performance Plans (MPPs)

- Cover all 11 missions
- Identify key drivers and trends
- Establish end state out to 2025
- Outline goals and objectives
- Detail major initiatives for FYHSP period
- Internal / External Communication Tool
CG-5
Mission Performance Plans
(11 Missions)

APR

MAY

CG-5
Identify, Validate
Key Drivers & Trends

Early JUL

CG-5
Conduct USCG
N. Maritime Strategic
Risk Assessment (NMSRA)

CG-7
Provide Status of
Previous Budget
Submissions and
Budget Guidance

Late MAY - Early JUN

JUL

CG-5
Identify and Prioritize
Risk & Performance
Gaps, Issues, &
Strategy Alternatives

Mid JUL

CG-5
Coast Guard Ops
Strategic Intent
(Integrated)

U.S. Coast Guard
Risk Assessment
Report
October 2008

PLAN

• Strategic Risk
• Operational Risk
• Mission Support Risk
• Institutional Risk
Commander’s Intent is established for next FYHSP period with emphasis for developing next FY budget

- Establishes organizational focus
- Lists objectives to be addressed during FYHSP horizon
- Prioritizes objectives for current budget build
DCO-R/CG-7 in conjunction with DCMS & FORCECOM:

- Translates objective needs into an identifiable solution (ACCCP) for current budget cycle
- Establishes criteria for Mission Analysis Reports to determine long-term capability requirements
Rear Admiral Wayne E. Justice serves as the Assistant Commandant for Capability (CG-7). He is responsible for identifying and providing capabilities, competencies, and capacity; for developing standards for the staffing, training, equipping, sustaining, maintaining, and employing Coast Guard forces to meet mission requirements.

Rear Admiral Justice previously served as the Director of Response Policy (CG-53) where he oversaw the development of operational policy guidance for the search and rescue, law enforcement, defense operations, and incident management missions.

Rear Admiral Justice came to Washington after serving as Chief of Staff for the 7th Coast Guard District (D7) in Miami, FL, where he oversaw the performance of 12,000 men and women, as well as 52 cutters, 182 small boats, and 39 aircraft.

His previous staff assignments have included: D7 Chief of Operations; D7 Chief of Law Enforcement; Chief, Office of Programs at USCG HQ; Executive Assistant to Commander, Atlantic Area; and Coast Guard Aide to Presidents Bush and Clinton. Additionally, he served as Aide to the Vice-Commandant, and as the Senior Watch Officer in the Miami Operations Center.

His shipboard assignments have included: Commanding Officer of the Coast Guard Cutters MUNRO (WHEC-724), homeported in Alameda, CA; MOHAWK (WMEC-913), Key West, FL; SHEARWATER (WSES-3), Key West, FL; and CAPE SHOALWATER (WPB-95324), West Palm Beach, FL. Additionally, he served as Executive Officer on DAUNTLESS (WMEC-624) homeported in Miami, FL; and as Deck Watch Officer on HAMILTON (WHEC-715), Boston, MA. In the course of his career, Rear Admiral Justice’s cutters seized 40 drug smuggling vessels, over 140 tons of marijuana and cocaine, arrested over 135 smugglers, and have interdicted and rescued over 4,500 Haitian, Chinese, Ecuadorian and Cuban migrants.

Rear Admiral Justice graduated with a Bachelors of Science degree in Management from the U.S. Coast Guard Academy in 1977. He received his Masters of Science degree in Human Resource Management with Honors from Nova University in 1983. He received a Masters of Arts degree from the U.S. Naval War College, College of Naval Warfare, in Strategic Studies in 1996. His personal awards include the Defense Superior Service Medal, Legion of Merit (three awards), Meritorious Service Medal (three awards), and Coast Guard Commendation Medal (four awards).

He is married to the former Virginia Arrington from West Palm Beach, FL. They have two children Amanda and Michael.
Integrated Requirements Process

Phases

1. Project Initiation
 - Mission Need Statement and Concept of Operations
 - Training and certification of requirements personnel

2. Project Authorization
 - Preliminary Operational Requirements Document
 - Guidance, templates and examples to support process

3. Alternative Selection
 - Operational Requirements Document (revalidated)
 - Funding for requirements generation and management

4. Production & Deployment
 - Operational Requirements Document
 - Requirements process synchronized with budget process

Products

- Mission Analysis Reports
- Mission Need Statement and Concept of Operations
- Preliminary Operational Requirements Document
- Operational Requirements Document

Process Elements

- Collaborative development by formally chartered teams
- Quality ensured through policy, process and gatekeeper assessments
- Traceability and change management through analysis and standard requirements database

Milestone 0 foundation for valid requirements
• Formal, high level statement
• Identifies strategic need for investment
• Broad description of asset type required to close capabilities gap
Concept Of Operations (CONOPS)

- Describes how the proposed asset or system will be used to meet mission needs
- Mission scenarios
- Describes how the proposed asset or system will be supported
- Support scenarios
- Distills functional capabilities for ORD development
- Develops consensus among all user entities
PORD represents Sponsor’s minimally constrained requirements

Iterative process allows refinement

Approved ORD is a contract between Sponsor and Acquirer
Framework of FMA

- Charter
- Alignment
- Mission Validation
- Mission Performance Targets
- Design Alternatives
 - OPC
 - UAS
 - LRI
- Capability Definition
- Asset Designs & Attributes
- Fleet Capacity Analysis
- Fleet-Mix Designs
- Campaign M&S (CGMOES, etc.)
- "Performance Assessment"
- Cost Analysis
- ROI
- Trade-Offs
- Business Case
- External Reporting

Validation
Design
Analysis
Report
Sample Mission: AMIO

Mission Objective – “What is CG Required to Do?”
Interdict/ Deter 87%
Stop 40% At Sea
Stop 100% Terrorists

Awareness Surveillance
Sortie/ Response
Proactive Operations
Prosecution Interdiction
Prevention

Mission CONOPS – “What Actions Required?”
Sensors
Command & Control
On-Scene Presence
Boarding
Detain/ Evacuate

Capability Definition – “What Do We Need to Do It?”
Tactical Surveillance Daily
On-Scene C2
% Cutter Per OpArea
Boarding Teams 2xEvent
Detain/ REPAT/ Control

Capacity – “How Much Capability is Required?”
Rear Admiral Blore assumed duties as the Assistant Commandant for Acquisition and Chief Acquisition Officer (CAO) on July 13, 2007. In this capacity, he directs efforts across all Coast Guard acquisition programs and related procurement management, contracting and research and development activities to support the Service’s current $27 billion acquisition investment portfolio. Prior to this assignment, Rear Admiral Blore served as the Program Executive Officer of the Coast Guard’s Integrated Deepwater System, overseeing the sustainment, modernization, and recapitalization of surface, air, command and control, and logistics assets for the Coast Guard’s multiple maritime missions.

A 1975 graduate of the U.S. Coast Guard Academy, Rear Admiral Blore initially served aboard the medium endurance cutter Venturous. In 1976, he commenced flight training at Naval Air Station Pensacola, Fla., and was designated a Coast Guard Aviator. From 1977 until 1982, he served as a helicopter aircraft commander at Coast Guard Air Station Brooklyn, N.Y., deploying frequently aboard cutters in the Caribbean. During that tour, he participated in the U.S. response to the Cuban Refugee Crisis of 1980. After a subsequent tour as a Program Reviewer and Budget Analyst for the Coast Guard Chief of Staff at Coast Guard Headquarters in Washington, D.C., he transitioned to Coast Guard “Guardian” fan-jets in 1988 and served as an aircraft commander at Coast Guard Air Station Cape Cod, Mass. While there, Rear Admiral Blore deployed as executive officer of a 28-member aviation detachment to Manama, Bahrain, during Operations Desert Shield and Desert Storm. In 1992, Rear Admiral Blore became the Group Operations Officer and then Deputy Group Commander for Coast Guard Group and Air Station, Corpus Christi, Texas. Following that assignment, he was selected to attend the Air War College, in Montgomery, Ala., where he studied national security issues.

In 1997, he became the fourteenth Commander of Group/Air Station Astoria, Ore., where he directed Coast Guard air and motor lifeboat operations along the Oregon and Washington coast. Following a three-year command tour, Rear Admiral Blore returned to Coast Guard Headquarters in July 2000 for assignment as Chief, Office of Aviation Forces, with programmatic oversight for all 30 of the Coast Guard’s air stations and facilities. From July 2002 to July 2004, Rear Admiral Blore served as the Coast Guard's Chief, Office of Budget and Programs for the Assistant Commandant for Planning, Resources and Procurement. He was responsible for formulation, justification, and programmatic execution of a $7 billion budget, Coast Guard policy review, and coordination of external outreach.

Upon promotion to flag rank in September 2004, Rear Admiral Blore served as Special Assistant to the President. In that capacity, he was the Homeland Security Council’s Senior Director for Border and Transportation Security.

Rear Admiral Blore is a DHS Level 3 Program Manager and holds a Bachelor of Science degree in economics, with honors, from the U.S. Coast Guard Academy. He also has a master's degree in public policy and administration from Columbia University, where he was selected as an International Fellow. His personal decorations include five awards of the Legion of Merit, two Meritorious Service Medals, two Coast Guard Commendation Medals and the Transportation 9-11 Medal, as well as other service and campaign awards.
The USCG requires capable patrol boat and medium endurance cutters to fulfill its statutory missions.

Aging legacy fleet assets drive the need for recapitalization.
<table>
<thead>
<tr>
<th></th>
<th>Island-class Patrol Boat</th>
<th>Medium Endurance Cutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>110 feet</td>
<td>270 feet</td>
</tr>
<tr>
<td>Beam</td>
<td>21 feet</td>
<td>38 feet</td>
</tr>
<tr>
<td>Draft</td>
<td>7.3 feet</td>
<td>14 feet</td>
</tr>
<tr>
<td>Propulsion</td>
<td>2 diesels, 5,820 bhp, 2 shafts</td>
<td>2 diesels, 7,290 bhp, 2 shafts</td>
</tr>
<tr>
<td>Speed</td>
<td>29.7 knots</td>
<td>19 knots</td>
</tr>
<tr>
<td>Displacement</td>
<td>155 tons full load</td>
<td>1,780 tons full load</td>
</tr>
<tr>
<td>Aviation</td>
<td>N/A</td>
<td>Flight deck with hangar; HH-60J or MH-65C helicopter</td>
</tr>
<tr>
<td>Armament</td>
<td>Mk38 25mm machine gun, 2x12.7mm MG</td>
<td>Mk75 76mm OTO Melara gun, 2x12.7mm MG</td>
</tr>
<tr>
<td>Crew</td>
<td>16-18</td>
<td>100</td>
</tr>
</tbody>
</table>
For lower intensity maritime operations, do we need original design?
Assessing the Patrol Boat Market

- Request for Information (RFI) - April 2006
- Market Survey included 27 industry submissions
- Independent assessment of industry submissions
 - Conducted by a private, third party firm
 - Engineering Analysis
 - Recommendations on requirements changes
 - Compared 27 designs to USCG Top Level Requirements (TLR)
 - Purpose: determine with a reasonable level of confidence that more than one vessel existed that could be feasibly adapted to meet USCG requirements
- Responses:
 - None met all TLR requirements (without modifications)
 - Five vessels were determined to be easily and cost effectively adaptable to the FRC TLR requirements with non-critical path engineering changes
 - Nine vessels did not appear to conform to the initial TLR but could be made to comply with major modifications to the design
 - Thirteen vessels did not appear to conform to the initial TLR (even with modifications)
Patrol Boat RFI Requirements

Recognizing the need to potentially adjust requirements in order to leverage the existing Patrol Boat Market, designs were considered which fell into an expanded range.

RFI Target Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>N/A</td>
</tr>
<tr>
<td>Navigational Draft</td>
<td>N/A</td>
</tr>
<tr>
<td>Speed</td>
<td>30 kts @ 97% Max Continuous Rating (MCR)</td>
</tr>
<tr>
<td>Best Economic Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>Maneuvering Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>Crew</td>
<td>20 enl, 2 off + 2 guests</td>
</tr>
<tr>
<td>Range</td>
<td>Fuel for 5 Day Mission (threshold); 7 Day Mission (objective)</td>
</tr>
<tr>
<td>Endurance</td>
<td>7 days</td>
</tr>
<tr>
<td>Sea Keeping</td>
<td>All missions through Sea State 4</td>
</tr>
<tr>
<td>Communications</td>
<td>Capable of multiple (>1) HF, VHF, UHF, Milsatcom & real-time secret-level network (SIPRNET)</td>
</tr>
<tr>
<td>Weapons</td>
<td>25MM remote operated, stabilized main gun and two manned .50 cal machine guns</td>
</tr>
<tr>
<td>Small Boat Launch/Recovery</td>
<td>7M (up to 8,500 lb) Rigid Inflatable Boat with stern ramp</td>
</tr>
</tbody>
</table>

RFI Range of Characteristics for Consideration

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>120-160 ft (36.5-49 meters)</td>
</tr>
<tr>
<td>Navigational Draft</td>
<td>Up to 10 ft (3 meters)</td>
</tr>
<tr>
<td>Speed, Full Load</td>
<td>26-45 knots</td>
</tr>
<tr>
<td>Best Economic Speed</td>
<td>10-13 knots</td>
</tr>
<tr>
<td>Maneuvering Speed</td>
<td>3-5 knots</td>
</tr>
<tr>
<td>Crew</td>
<td>16-24</td>
</tr>
<tr>
<td>Range</td>
<td>3500-5500 NM @ Best Economic Speed</td>
</tr>
<tr>
<td>Endurance</td>
<td>5-10 days</td>
</tr>
<tr>
<td>Sea Keeping</td>
<td>N/A</td>
</tr>
<tr>
<td>Communications</td>
<td>Multiple HF, VHF, UHF, Milsatcom & near real-time secret-level network (SIPRNET) - Multiple HF, VHF, UHF, Milsatcom & real-time secret-level network (SIPRNET) and Link</td>
</tr>
<tr>
<td>Weapons</td>
<td>25MM Main Gun and .50 cal machine gun - 25MM remote operated, stabilized main gun and two manned .50 cal machine guns</td>
</tr>
<tr>
<td>Small Boat Launch/Recovery</td>
<td>Over the Side or Stern Ramp</td>
</tr>
</tbody>
</table>
Sample data and overall summary of 27 Parent Craft Patrol Boat responses

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Prop. Top Level Rqm't</th>
<th>Vessels Less than 160 feet meeting initial Definition of Proven Patrol Boat</th>
<th>Results Summary for 27 vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sample 1</td>
<td>Sample 2</td>
</tr>
<tr>
<td>No. Boats built</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Length</td>
<td>120-160'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft, Navigational</td>
<td>7' to 10'</td>
<td>148'</td>
<td>144'</td>
</tr>
<tr>
<td>Full Load Speed</td>
<td>30-40 Kts</td>
<td>5'-6"</td>
<td>7"</td>
</tr>
<tr>
<td>Speed</td>
<td>33.5 knots</td>
<td>32.5 knots</td>
<td>26-27 knots</td>
</tr>
<tr>
<td>Accommodations</td>
<td>22</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>Range @ 10 Kts</td>
<td>N/A</td>
<td>2188 nm</td>
<td>2312 nm</td>
</tr>
<tr>
<td>Range @ 30 Kts</td>
<td>N/A</td>
<td>1230 nm</td>
<td>672 nm</td>
</tr>
<tr>
<td>Endurance</td>
<td>5-7 days</td>
<td>7 days</td>
<td>10 days</td>
</tr>
<tr>
<td>Hull Material</td>
<td>N/A</td>
<td>Steel</td>
<td>Steel</td>
</tr>
<tr>
<td>Superstructure Material</td>
<td>N/A</td>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Stern Ramp, Deck Crane or Davit</td>
<td>Stern Ramp</td>
<td>Stern Ramp</td>
<td>Deck Crane</td>
</tr>
<tr>
<td>Operational Sea State</td>
<td>SS 4</td>
<td>Sea State 5</td>
<td>Sea State 5</td>
</tr>
<tr>
<td>Weapons</td>
<td>25mm</td>
<td>25 mm</td>
<td>76 mm</td>
</tr>
</tbody>
</table>
FRC Requirements

Fixed Requirements – Prescriptive Circular of Requirements (COR)

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>FRC (TLR) Threshold Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flank Speed</td>
<td>28 knots</td>
</tr>
<tr>
<td>Independent Operation</td>
<td>5 days</td>
</tr>
<tr>
<td>Sea Keeping</td>
<td>Continuous Operations through SS4</td>
</tr>
<tr>
<td>Boat Launch & Recovery</td>
<td>Through SS4 with 3 personnel on deck</td>
</tr>
<tr>
<td>Length</td>
<td>120’-160’</td>
</tr>
<tr>
<td>Draft</td>
<td>10’</td>
</tr>
<tr>
<td>Towing</td>
<td>Tow vessel similar in size and displacement</td>
</tr>
<tr>
<td>AMIO</td>
<td>150 migrants @ 5 sqft per person</td>
</tr>
<tr>
<td>Watchstanding</td>
<td>2 Bridge, 1 Engineer</td>
</tr>
<tr>
<td>Berthing</td>
<td>24, 4 person max in any berthing area</td>
</tr>
<tr>
<td>Internal Deck Space</td>
<td>50 sqft per accommodation</td>
</tr>
<tr>
<td>Messdeck Seating</td>
<td>16</td>
</tr>
<tr>
<td>Speed Range</td>
<td>Bumpless 3 knots to Flank speed</td>
</tr>
<tr>
<td>Service Life</td>
<td>20 years</td>
</tr>
<tr>
<td>Vessel Classification</td>
<td>American Bureau of Shipping (ABS) - High Speed Naval Craft</td>
</tr>
</tbody>
</table>

Chem/Bio requirement eliminated
Sentinel Class Details

Parent Craft – Based on Damen’s Stan Patrol 4708

- **FRC/Sentinel Class**
- **RFP Requirements**

- Length: 120 ft. – 160 ft.
- Flank Speed: 28 knots min.
- Independent Operations: 5 days min.
- Seakeeping: At a minimum conduct all missions through SS4 and survive through SS6
- C4ISR: Interoperable with CG, DHS, DOD, RESCUE 21.
- Armament: 25mm remote operated weapon system, .50-caliber machine guns
- Crew Size: 20 Enlisted and 2 Officers
- Small Boat Launch/recovery: Performed safely with no more than 3 personnel
Assurances

- Direct contractor relationship
- Detailed technical requirements
- Cutter classification - ABS HSNC
- Parent Craft designer and builder on engineering team
- On-site Government staff
- Fixed-price
- Technical Authority extensively involved
- Independent Verification
- Navy Partnerships
- Use of State-of-the-Market Technology
- LRIP
- Option for Data & License Package – Ability to Re-compete Cutters
Offshore Patrol Vessel

Is same parent craft strategy applicable?
OPC Requirements

- Proven, currently in-service vessels
 - Or, variants of in service vessels
 - Capable of being built or licensed to be built in the United States

- OPC missions will generally operate in deep water (beyond 50 nautical miles from shore) in extreme environmental conditions in a low threat environment. Missions:
 - ports and waterways security
 - search and rescue
 - drug interdiction
 - migrant interdiction
 - Exclusive Economic Zone (EEZ) enforcement
 - defense of escorted vessels
 - command presence in areas of distress

- The vessel will generally operate for 185-210 days away from homeport

- USCG intends to acquire up to 25 vessels
Requirements in the OPC RFI (October 2008)

RFI Notional Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>N/A</td>
</tr>
<tr>
<td>Navigational Draft</td>
<td>N/A</td>
</tr>
<tr>
<td>Speed</td>
<td>Escort typical merchant vessel ~ 25 Knots</td>
</tr>
<tr>
<td>Best Economic Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>Maneuvering Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>Crew</td>
<td>~ 100 regular crew (officer/enlisted ratio ~ 20/80) plus ~ 20 surge (to include aviation, intelligence or other detachments)</td>
</tr>
<tr>
<td>Range</td>
<td>7500 NM, @12-14 knots, with 30% fuel reserve</td>
</tr>
<tr>
<td>Endurance</td>
<td>~ 14 days between refueling and 45 days of provisions and stores</td>
</tr>
<tr>
<td>Sea Keeping</td>
<td>Continuous operation (other than replenishment and strike down) through sea state 5 (including aviation and small boat operations), limited operation and capability of continuing mission through sea state 7, and survive without serious damage to mission essential systems through sea state 8</td>
</tr>
<tr>
<td>Communications</td>
<td>Capable of multiple (>1) HF, VHF, UHF, Milsatcom & Real time secret-level network connectivity (SIPRNET) IMARSAT, GMDSS</td>
</tr>
<tr>
<td>Weapons</td>
<td>MK 100 Mod 0 57MM remote operated stabilized and Four.50 guns (Remote Operated Small Arms Mount [ROSAM] equivalent)</td>
</tr>
<tr>
<td>Small Boat Launch/ Recovery</td>
<td>Two small boats</td>
</tr>
<tr>
<td>Classification</td>
<td>American Bureau of Shipping High-Speed Naval Craft Guide</td>
</tr>
<tr>
<td>Service Life</td>
<td>30 years</td>
</tr>
</tbody>
</table>

RFI Range of Characteristics for Consideration

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>300 – 390 feet</td>
</tr>
<tr>
<td>Navigational Draft</td>
<td>Up to 18 feet</td>
</tr>
<tr>
<td>Speed, Full Load</td>
<td>24 – 30 knots</td>
</tr>
<tr>
<td>Best Economic Speed</td>
<td>12 -15 knots</td>
</tr>
<tr>
<td>Maneuvering Speed</td>
<td>5 – 8 knots</td>
</tr>
<tr>
<td>Positive Steering</td>
<td>All Speeds</td>
</tr>
<tr>
<td>Accommodations</td>
<td>90-130</td>
</tr>
<tr>
<td>Range</td>
<td>5500 NM – 9000 NM @ Best Economic Speed</td>
</tr>
<tr>
<td>Endurance</td>
<td>30-50 days provisions and stores</td>
</tr>
<tr>
<td>Sea Keeping</td>
<td>N/A</td>
</tr>
<tr>
<td>Communications</td>
<td>Multiple HF, VHF, & UHF voice circuits (classified & unclassified), Milsatcom & Commercial Satcom data circuits (classified & unclassified) including SIPRNET</td>
</tr>
<tr>
<td>Common Operating Picture</td>
<td>Ability to display own ship tracks as well as contact info passed from other commands (ship/air/shore)</td>
</tr>
<tr>
<td>Weapons</td>
<td>35-57 MM remote operated, Stabilized and >3 .50 cal guns (ROSAM equivalent or manned)</td>
</tr>
<tr>
<td>Small Boat Launch/ Recovery</td>
<td>Over the Side or Stern Ramp, minimum of two boats simultaneously deployed</td>
</tr>
<tr>
<td>Aviation Facilities</td>
<td>Minimum of 1 landing spot and one hanger</td>
</tr>
<tr>
<td>Classification</td>
<td>International Associated Classification Societies (IACS)</td>
</tr>
<tr>
<td>Service Life</td>
<td>25-40 years</td>
</tr>
</tbody>
</table>
Summary

- Parent Craft acquisition strategy is viable

- The use of RFIs is an effective tool in validating
 - Parent craft approach
 - Requirements

- Key acquisition success factors include
 - Technical Authority
 - Detailed Design Requirements
 - Direct Contract relationship
 - Sponsor Engagement
 - Designer Participation
 - ABS Class
 - Navy Partnership
 - Independent Third Party Review
 - Use of State-of-the-Market Technology
 - LRIP
 - Option for Data & License Package – Ability to Re-compete Cutters

- Low risk
Claire M. Grady is the Senior Procurement Executive and the Head of the Contracting Activity for the U.S. Coast Guard, providing leadership on procurement operations and policy development and also serves as the Competition Advocate. Prior to assuming this role in July 2007, Ms. Grady was the Director of Strategic Initiatives in the Office of the Chief Procurement Officer for the Department of Homeland Security (DHS) where she provided strategic direction impacting DHS’ multi-billion dollar contracting and financial assistance through a broad portfolio of acquisition initiatives, including Acquisition Policy, Grants Policy and Oversight, Strategic Sourcing, Competitive Sourcing, and Acquisition Systems.

Ms. Grady has been a certified acquisition professional since 1996 and is certified at Level III in Contracting by DOD and DHS. Prior to joining DHS, Ms. Grady held a number of critical procurement positions within the Department of the Navy, including serving as the Deputy Division Director for Surface Weapon Systems at the Naval Sea Systems Command (NAVSEA) where she provided executive leadership and strategic guidance for the acquisition of major weapon systems with annual obligations in excess of $4.5B. She has extensive experience in developing and implementing successful acquisition strategies and business process re-engineering. Over the course of her career, Ms. Grady has served as contracting officer for the Navy's latest Amphibious Assault Combat Ship (LPD 17), program manager for the multi-billion dollar Navy-wide acquisition of contractor support services (SeaPort) and Director of Strategic Initiatives for the NAVSEA Contracts Directorate.

Ms. Grady holds a Bachelor of Arts degree in Economics from Trinity University, a Master in Business Administration degree from the University of Maryland and a Master of Science degree in National Resource Strategy from the Industrial College of the Armed Forces.
Acquisition Approach For New Needs

- Commercial off-the-shelf
- Adapt/Ruggedize
- Integrate COTS or NDI Subsystem
- New Design Development

Development Cost

- Adapt/Ruggedize
- Integrate COTS or NDI Subsystem
- New Design Development

Development Time

- Commercial off-the-shelf
- New Design Development
Characteristics

Detailed Specifications
- Contains design solutions
- How requirements are to be achieved
- How an item is to be fabricated
- How an item is to be constructed

Performance Specifications
- Defines function of item
- Environment in which it must operate
- Interface/Interchangeability requirements
- Criteria for verifying compliance

"HOW TO"

"WHAT"

Need to strike the right balance on the spectrum
• A continuous process for gathering data on product characteristics, supplier's capabilities and business practices that surround them - plus the analysis of that data to make acquisition decisions (SD-5, Market Research, July 1997)

• Research information should be used for the content of (1) product description, (2) the support strategy, (3) terms and conditions to be included in the contract and (4) evaluation factors used for source selection

• Two phases:
 - Surveillance -- Keeping abreast of technology and product upgrades
 - Investigation -- In-depth, looking for specific requirements
Market Research

WHO DOES IT & WHY?

- Conducted by everyone involved in acquisition
- Identify opportunities for use of commercial products or services to meet defense needs
- Access to latest technology -- state-of-the-market technology integrated into systems and assets
- Reduce costs
- Reduce acquisition time
- Write specifications and SOWs to allow companies to offer commercial items and services
Acquisition Strategy

HOW WILL WE?

- Contract for the item (Cost vs Fixed Price, Fee Structure)
- Develop the item (COTS, NDI, New Design Development)
- Test the item (Contractor approved, Government, or develop new test procedures)
- Produce the item (is it viable to have multiple vendors and/or solutions?)
- Field the item (Which unit, how many items, when needed)
Acquisition Directorate
Head of Contract Activity

http://www.uscg.mil/acquisition
QUESTIONS?
BACK-UP SLIDES
CG-9 Acquisition Directorate – 22 Projects

Surface Projects
- National Security Cutter (NSC): (8)
- Offshore Patrol Cutter (OPC): (25)
- Fast Response Cutter (FRC): (58) Sentinel Class
- Coastal Patrol Boat (CPB): (73)
- Response Boat – Medium (RE-M): (180)
- Long Range Interceptor (LRI): (33)
- Short Range Prosecutor (SRP): (91)
- Great Lakes Ice Breaker Replacement (GLIB): (1)
- Inland River Tender Emergency Sustainment
- Response Boat – Small (RB-S): (916)

Mission Effectiveness Projects
- (CG Yard): WPB: (20)
- WMEC 210: (13)
- WMEC 270: (13)

Aviation Projects
- HH-65C: (102)
- HH-60J: (42)
- Maritime Patrol Aircraft: (36)
- Long Range Search Aircraft
 - HC-130J: (6)
 - HC-130H Initiative: (16)
- 2 Unmanned Aircraft Systems (UAS)

C4ISR Projects
- Integrated OpCen/Command 21
- Nationwide Automatic Information System
 - Deepwater
 - Rescue 21

Logistics

Beyond Acquisition
- Contracting
 - Chief of the Contracting Offices
- Research & Development (R&D)
 - R&D Center
- Foreign Military Sales
USCG Chief of Contracting Offices

Head of Contracting Activity
Clarence G. Grap
Deputy, Head of Contracting
Terry A. Solazs

MLC Pacific Commands
MLC Atlantic Commands

HQs Commands
Contracting Offices $>100,000

CEU
HONO
HONOLULU

CEU
JUN
JUNEAU

CEU
OAK
OAKLAND

FDCC
PAC
PACIFIC

MLCP
FCP
FCP

VPL
VPL

CG-912
S сент

ELC
Catherine
Martindale

R & DC
Joy
Simmons

ARSC
David
Burgess

CEU
CEU
PROV

CEU
MIA
MIAMI

CEU
CLEV
CLEVELAND

FDCC
LA NT

LANT

MLCL
FCP

MLCL
VPL

SAP Contacting Offices $< 100,000

ISC
Alameda

ISC
Hono

ISC
Ketchikan

ISC
Seattle

ISC
San Pedro

ISC
Whidbey

ISC
Kodiak

ISC
Fall River

ISC
New London

ISC
Newport

ISC
Trenton

ISC
Miami

ISC
Cleveland

ISC
Bristol

ISC
New Orleans

ISC
Pensacola

ISC
Shreveport

ISC
St. Louis

*CG-912 is the only COCO that reports directly to the HCA.