Complex Systems of Systems: The Double Challenge

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Philip Boxer, Lisa Brownsword, Ed Morris
23 October 2007
Instigate an alternative way of viewing systems of systems

- Begin equipping participants to ask different questions about the challenges and the opportunities

Agenda

- Describe a project approach
- Explore implications of a changing world
- Describe an alternative reasoning framework
Many Organizations Have These Problems

The DoD

Other federal agencies

Large and small industrial organizations across the globe

Recent studies by the SEI and international consortia show that large, systems of systems (SoS) are endemic

• SoS challenge the capabilities of high-performing, high-capability organizations accustomed to large systems.

• These challenges surface throughout development, acquisition, deployment, and evolution.

• These challenges derive from working across multiple enterprises in response to rapidly changing and unanticipated forms of operational demand.
Creating, Using, and Evolving Composites of Systems
Why isn’t This Straightforward?

A typical approach

- Look at the software aspects of individual systems
- Determine which ones are “good” for the composite system of systems
- Determine how to put the good ones together—quickly

“Click and Clack” example

National Public Radio’s Car Talk
What is Needed: A Concept of “Operational” that Takes a Broader View

Multiple forms of (potentially non pre-determined) operational effects

Operational uses have to be addressed this level

Geometries-of-use

SoS orchestrations

Requirements

Solutions

Decomposition

System components

System integration

The Programmatic and Constructive deal with the bottom ‘Vs’

http://www.asymmetricdesign.com/archives/85
Looking at the Situation from a System-of-Systems Perspective

User and Other Stakeholder Communities

Operational Decision-Making Process

“the hole-in-the-middle”

Existing and In-progress Systems

Possible Futures

What are the gaps between what capabilities are provided (supplier push) that responds to user and stakeholder needs (operational pull)
Key Challenge: How Entities Work Together and Resolve Conflicts

- Number, type, and roles of participants are increasingly diverse, reflecting differing vested interests
- Scarce resources and the need for concurrent uses make a single decision authority increasingly unlikely

Single Task System
- A single program directs composition; little potential for conflict

Single Enterprise System
- A real or virtual entity directs how multiple entities collaborate to compose multiple programs; and resolves potential conflicts by imposing constraints

Multi-Enterprise System
- Multiple real or virtual directing entities making competing demands on SoS; and conflict resolution requires negotiating mutual constraints

Key Challenge: Increasingly Turbulent Operational Contexts

- Customers and users want specialized solutions in ever shorter time frames continuously adapted to their changing and evolving situations
- Suppliers and systems have to become more agile to respond

Categories adapted from “The New Frontier of Experience Innovation”, Prahalad and Ramaswamy, MIT Summer 2003

A Double Challenge: Diversity of Participants with Turbulent Usage Contexts and Needs

1 - Collaborating Effectively Across Boundaries

2 - Developing flexible responses to changing situations

Disruption due to addressing the multi-enterprise governance context

Disruption due to diverse demands arising from dynamic contexts of use context

Source: The Double Challenge, Philip Boxer, 2006; http://asymetricdesign.com/archives/16
The Need: Leveraging the Double Challenges

Collaborating across boundaries to provide flexible responses to changing situations

Source: Adapted from “Discovering The Value of Systems Engineering” INCOSE Conference Proceedings, 2000
An Example

Where were they?

Where did they need to be?

What were the gaps?
The Situation

Multi-national stakeholders in an acquisition program updating a system of systems within an operational capability

- Operational capability itself occupies a key role interoperating with other capabilities within a single unified command undertaking joint missions.
- Issue was the sustainment of the operational capability through its life given anticipated changes in its role and the complex nature of its systems.

This involved three challenges:

1. managing the process of upgrading within the context of sustaining the operational capability
2. improving the way these processes are managed through the life of the capability, given their systems-of-systems nature
3. improving the role of acquisition in support of this kind of sustainment
Objective: understand and analyze technical, cognitive, process, and organizational elements and their inter-relationships—within their context-of-use.
5 Layers of Analysis

Structure/Function: The physical structure and functioning of resources and capabilities

Trace: The digital processes and systems that interact with the physical processes

Hierarchy: The formal hierarchies under which the uses made of both the physical and the digital are held accountable

Synchronization: The lateral relations of synchronization and orchestration within and between the organizations providing services “on the ground”

Demand: The nature of the contexts-of-use giving rise to demands on the way the operations are organized to deliver effective and timely services
The Outputs

Stratification analyses different levels of interoperability* from the point of view of the demands placed on the system of systems by the environment

- Synchronization (Can the configurations needed interoperate in practice?)
- Orchestration (What are the dynamic load characteristics generated?)
- Customization (Will baseline functionality be met?)

Stratification

- 6. Effects environment
- 5. Mission environment
- 4. Deployed Force
- 3. Operationally ready capabilities
- 2. Field-able capabilities
- 1. Equipment and bought-in capabilities

Landscapes represent topological characteristics of the system of systems

- Interoperability ‘hotspots’ (peaks)
- Risks (gaps between peaks)
Analysis for Synchronization

Shows that the predominant mission awareness integration point is the system operator and the operator’s display console.

Source: An Examination of a Structural Modeling Risk Probe Technique, Anderson, Boxer & Brownsword (2006), http://www.sei.cmu.edu/publications/documents/06.reports/06sr017.html
Analysis for Orchestration

Reveals areas of isolation, islands of high connectivity, and broad regions of separation

Source: An Examination of a Structural Modeling Risk Probe Technique, Anderson, Boxer & Brownsword (2006), http://www.sei.cmu.edu/publications/documents/06.reports/06sr017.html
Analysis for Customization

Source: An Examination of a Structural Modeling Risk Probe Technique, Anderson, Boxer & Brownsword (2006), http://www.sei.cmu.edu/publications/documents/06.reports/06sr017.html
Putting It Together

Where were they?

- The organization was driven by an acquisition focus for systems with a pre-defined range of performance requirements.

Where did they need to be?

- They needed to relate the current state of operational mission capability to its evolving role through its life.

What were the gaps?

- They had no effective way of managing this cycle as a whole.

http://www.asymmetricdesign.com/archives/85
Summary

Systems of systems offer new opportunities and challenges

- Potential for greater range of composite mission capabilities orchestrated across systems of systems.
- Need for the ability to continuously extend and adapt an operational capability through its life as a part of a system of systems.

This presents a double challenge—both the institutional alignment and the alignment to new and emerging forms of demand.

We can evaluate and characterize the gaps and risks by examining the forms of interoperability possible within a context.

Providing methods to “work” the double V as an integrated cycle can provide the means of mitigating risks arising from this dynamic (re-) alignment through the life of the military operational capability.
For More Information

Philip Boxer
pboxer@sei.cmu.edu

Lisa Brownsworth
llb@sei.cmu.edu

Ed Morris
ejm@sei.cmu.edu