DoD Systemic Root Cause Analysis

Dave Castellano
Deputy Director, Assessments and Support

Laura M. Dwinnell
Systemic Analysis Team Leader

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense for Acquisition and Technology

23 October 2007
Systems and Software Engineering... What are we all about?

Acquisition Program Excellence through sound systems and software engineering...

- Help shape portfolio solutions and promote early corporate planning
- Promote the application of sound systems and software engineering, developmental test and evaluation, and related technical disciplines across the Department's acquisition community and programs
- Raise awareness of the importance of effective systems and software engineering, and drive the state-of-the-practice into program planning and execution
- Establish policy, guidance, best practices, education, and training in collaboration with academia, industry, and government communities
- Provide technical insight to the leadership to support effective and efficient decision making

Based on USD(AT&L) 2004 Imperative...

“Provide context within which I can make decisions about individual programs.”
Providing Value Added Oversight & Support

Tactical, Program and Portfolio Management

- PEOs & PMs...
 - PSR
 - AOTR
 - SEP
 - TEMP
 - DAES

AS Results
Achieved thru
- Open Communication/Debate
- Insight & Information Sharing
- Understanding of Consequences
- Data Driven, Fact-based Information Synthesis

Acquisition Leadership
- Improved Acquisition Decision Making thru...
 - Greater Program Transparency
 - Acquisition Insight

Strategic Management

DoD Acquisition Community
 - Improved Acquisition Support to Warfighter

- Systemic Issues & Risks
- Systemic Strengths & Indicators

Recommendations

Policy/Guidance
- Education & Training

Best Practices
- Other Processes (JCIDS, etc)

Oversight (DABS/ITAB)
- Execution (staffing)
Program Support Review (PSR)
Taxonomy of Classifications

Findings

+ Positive
- Negative
O Neutral

May be a candidate for Best Practice
May be a candidate for Process Improvement Recommendation

~ Risk
- Issue

Root Cause(s) Impact(s) Recommendation(s)

~ Risk

Root Cause(s) Impact(s) Recommendation(s)

Potential
~ Risk

Root Cause(s) Impact(s) Recommendation(s)

~3700 Findings from Program Reviews
Top 10 Emerging Systemic Issues
(from 52 Program Reviews since Mar 04)

1. Management
 • IPT roles, responsibilities, authority, poor communication
 • Inexperienced staff, lack of technical expertise

2. Requirements
 • Creep/stability
 • Tangible, measurable, testable

3. Systems Engineering
 • Lack of a rigorous approach, technical expertise
 • Process compliance

4. Staffing
 • Inadequate Government program office staff

5. Reliability
 • Ambitious growth curves, unrealistic requirements
 • Inadequate “test time” for statistical calculations

6. Acquisition Strategy
 • Competing budget priorities, schedule-driven
 • Contracting issues, poor technical assumptions

7. Schedule
 • Realism, compression

8. Test Planning
 • Breadth, depth, resources

9. Software
 • Architecture, design/development discipline
 • Staffing/skill levels, organizational competency (process)

10. Maintainability/Logistics
 • Sustainment costs not fully considered (short-sighted)
 • Supportability considerations traded

Major contributors to poor program performance
Observations Since Last Year

- Programs fail because we don’t…
 - Start them right
 - Manage them right
...We Don’t Start Them Right

- Requirements creep/stability – not tangible, measurable, testable, defined
- Acquisition strategies based on poor technical assumptions, competing budget priorities, and unrealistic expectations
- Budget not properly phased
- Lack of rigorous systems engineering approach
- Schedule realism – success oriented, concurrent, poor estimation and/or planning
- Inadequate test planning – breadth, depth, resources
- Optimistic/realistic reliability growth – not a priority during development
- Inadequate software architectures, design/development discipline, and organizational competencies
- Sustainment/life-cycle costs not fully considered (short-sighted)
…We Don’t Manage Them Right

• Insufficient trade space – resources, schedule, performance, requirements
• Inadequate IMP, IMS, EVMS
• Insufficient risk management
• Concurrent test program
• Inadequate government PMO staff
• Inexperienced and/or limited staffing
• Poorly defined IPT roles, responsibilities and authority
• Poor communications
<table>
<thead>
<tr>
<th>Solution Set</th>
<th>Systemic Root Cause</th>
<th>Systemic Issues</th>
<th>Symptoms</th>
<th>Who’s Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy/Guidance</td>
<td>Technical Process</td>
<td>Management</td>
<td>Etc</td>
<td>Acq Exec</td>
</tr>
<tr>
<td>Education & Training</td>
<td>Management Process</td>
<td>Requirements</td>
<td></td>
<td>Component Rep</td>
</tr>
<tr>
<td>Best Practices</td>
<td>Acquisition Practices</td>
<td>Systems Engineering</td>
<td></td>
<td>PEO</td>
</tr>
<tr>
<td>Governance</td>
<td>Requirements Process</td>
<td>Staffing</td>
<td></td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td>Competing Priorities</td>
<td>Acquisition Strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staff</td>
<td>Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td>Test Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Realism</td>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contract Structure & Execution</td>
<td>Maintainability & Logistics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations Must Address Root Causes at Their Source

- Increased program execution risk
- Potential schedule and cost breach
- Shared engineering functions not given proper attention
- Rework
- Insufficient system performance information to make informed milestone decision
- Potential for lower readiness levels and higher maintainer workload
- Etc…
Systemic Analysis Milestones

- **Develop & pilot root cause terms**
 - Oct 06
 - Categorized root cause textual descriptions
 - Terminology developed by small team, limited
 - Pilot effort proved that terms lacked proper structure and definition

- **Conduct SRCA Workshop (Part I)**
 - Jan 07
 - Redefined Root Cause Type: 3 Tier
 - Terminology developed by workshop participants representing DoD and Industry
 - RCT structure informally tested on 4 programs from different domain areas

- **Conduct SRCA Workshop (Part II)**
 - Feb – Jul 07
 - Pilot RCT on program reviews: past effort and go-forward
 - Definitions enhanced, terminology revised
 - Analysis of trends and applicability;

- **Apply Root Cause Structure to program findings**
 - Feb – Jul 07
 - Validate pilot on root cause method/structure
 - Formulate systemic root cause recommendations
 - Feedback on SA model and root cause methodology

- **Analyze preliminary results**
 - Aug 07
 - Coming Up:
 - Oct 07: Present results to SE community (NDIA-SE Conference)
 - Nov 07: Present results to acquisition community (PEO SYSCOM)
 - Dec 07: Formalize and standardize methodology
 - Mar 08: Incorporate other data sources (SEP, Triage, etc)

- **Expand analysis to complete data set**
- **Establish NDIA Working Group on SRCA**

NDIA-SRCA v1.01
Root Cause Types
Recap of Part I Results

- Root Cause Types needed to categorize and discuss root causes
- **Root Cause Type** structure defined
 - **Tier 1: Root Cause**
 » Textual description; documented by PSR team
 » Perceived program root cause
 - **Tier 2: Systemic Root Cause**
 » From pre-defined list; assigned by PSR team
 » Can be "A" or "a". Conditions that are outside the PMO below the Defense/Service Acquisition Executive level. This would include lateral activities, such as Service staff functions (OPNAV, Air Staff, etc.) and the system commands.
 - **Tier 3: Core Root Cause**
 » From pre-defined list; assigned by PSR team
 » At the "A" level. Something at the DAE level (3 Star level and above) – Issues resolved through DAE coordination with Congress, DoD, Services, Industry, etc.

Root Cause Analysis is Crux of Systemic Solutions
Root Cause Type Structure

Systemic Root Cause (Tier 2)

1. Ineffective communication
2. Competing priorities
3. CONOPs change
4. Definition of enterprise
5. Engagement of supply base in SE process
6. Expectations not defined
7. Inadequate baseline management
8. Inadequate contract structure and execution
9. Inadequate cost metrics e.g. EVMS
10. Lack of accountability
11. Lack of capital investment
12. Lack of enterprise wide perspective
13. Lack of appropriate staff
14. Lack of trade space/constraints
15. Lack of trust and willingness to share information
16. Obfuscating bad news
17. Ineffective organization
18. Poorly defined roles/responsibilities
19. Process - Management
20. Process - Production
21. Process - Requirements
22. Process - Technical
23. Program realism
24. Responsibility w/o authority
25. Poor Acquisition Practices

Core Root Cause (Tier 3)

1. Acq Reform: Loss of govt. capital investment
2. Acq Reform: Loss of MS A requirement
3. Acq Reform: Transferred Authority
4. Enabling infrastructure
5. Budget POM process (PBBE)
6. Culture
7. Rotations / continuity
8. Inadequate JCIDS process
9. Pool of clearable skilled people
10. External influences
11. Poor business practices

Note: “Other” and “Unknown” are viable selections
SADB Features

- Relational
- Web-enabled
- Excel output
- Embedded charts
- Search wizards
- Data query
- Data quality reporting

Database contains ~3700 program findings from 52 reviews

Welcome “Username”
Systemic Root Cause Analysis
Preliminary Results

• Analysis performed on 44 program reviews
• SRCA applied to negative findings: ~ 48% of total set, ~1500 findings
• Trends shown by:
 – (1) Systemic Root Cause (SRC)
 – (2) DAPS areas related to leading SRC
 – (3) Core Root Cause (CRC)
 – (4) SRCs as related to:
 » CRC = Poor Business Practice
 » CRC = Culture

See Next 5 Slides for Results...
Categorization by Systemic Root Cause

Number of Programs that Experienced the SRC (Part 1 of 2)

- Technical (process)
- Management (process)
- Acquisition Practices
- Requirements (process)
- Competing priorities
- Staff (Lack of appropriate)
- Organization (ineffective)
- Communication (ineffective)
- Program Realism
- Contract
- Structure and Enterprise Wide
- Expectations not defined
- Capital Investment

Note: Chart shows 13 of 26 SRCs

• Occurred on 50% or more of the programs

Occurred on 50% or more of the programs
Systemic Root Cause: Technical Process

<table>
<thead>
<tr>
<th>DAPS Area</th>
<th>No. of Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Proc & Proj Mgt</td>
<td>17</td>
</tr>
<tr>
<td>4.5 Sys Inst Test & V</td>
<td>17</td>
</tr>
<tr>
<td>2.7/3.2 Proj Admin</td>
<td>12</td>
</tr>
<tr>
<td>4.7 Process Improv.</td>
<td>11</td>
</tr>
<tr>
<td>5.1 System Descript.</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Func. Analysis &</td>
<td>8</td>
</tr>
<tr>
<td>5.2 System Perfor.</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Acq. Strategy/P</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Proj. Plan</td>
<td>5</td>
</tr>
<tr>
<td>5.3 System Attr.</td>
<td>4</td>
</tr>
<tr>
<td>4.7 Proc. Improv.</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Op. Reqmt</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Reqmts Develop.</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Persona</td>
<td>2</td>
</tr>
<tr>
<td>2.4 Engineering Tool</td>
<td>2</td>
</tr>
<tr>
<td>3.4 Cont & Subcon.</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Tech Asmt & T.</td>
<td>2</td>
</tr>
<tr>
<td>6.1 Stat & Reg. Env.</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Capabilties</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Facility</td>
<td>1</td>
</tr>
<tr>
<td>4.6 Transition to De.</td>
<td>1</td>
</tr>
</tbody>
</table>

For SRC = Technical Process: Number of Programs that Experience Issues by DAPS

- Aggressive, success-oriented, highly concurrent test schedule
- Reliability not progressing as planned or has failed to achieve requirements
- Software reuse was significantly less than planned or expected
- Testing and verification approach are inadequate
- Program has inadequate systems engineering process
Categorization by Core Root Cause

Number of Programs that Experienced the CRC

<table>
<thead>
<tr>
<th>Core Root Cause</th>
<th>No. of Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor business practices</td>
<td>31</td>
</tr>
<tr>
<td>Culture</td>
<td>30</td>
</tr>
<tr>
<td>External Influences</td>
<td>30</td>
</tr>
<tr>
<td>Enabling Infrastructure</td>
<td>26</td>
</tr>
<tr>
<td>Inadequate JCIDS process</td>
<td>21</td>
</tr>
<tr>
<td>Acq reform: Loss of govt capital</td>
<td>20</td>
</tr>
<tr>
<td>Other</td>
<td>17</td>
</tr>
<tr>
<td>Budget POM process (PBBE)</td>
<td>16</td>
</tr>
<tr>
<td>Pool of clearable skilled people</td>
<td>13</td>
</tr>
<tr>
<td>Acq reform: Transferred too much authority to</td>
<td>10</td>
</tr>
<tr>
<td>Acq reform: Loss of MS A requirement</td>
<td>6</td>
</tr>
<tr>
<td>Rotations / continuity</td>
<td>6</td>
</tr>
</tbody>
</table>

Occurred on 50% or more of the programs
Relationship between CRC and SRC

For CRC = Poor Business Practices: Number of Programs that Experienced SRC

- Management (process)
- Technical (process)
- Contract Structure and Execution
- Acquisition Practices
- Communication
- Management (process)
- Roles/Responsibilities (poorly defined)
- Cost Metrics (ineffective)
- Organization (ineffective)
- Competing priorities
- Enterprise Wide
- Expectations not defined
- Program Realism
- Production (process)
- Staff (lack of)
- Capital Investment (lack of)
- Accountability (lack of)
- Conops change
- Definition of enterprise
- Engagement of supply base in SE
- Obfuscating bad news
- Responsibility w/o authority
- Trust & willingness to share information

SRCA Workshop (II) focused on these
For CRC = Culture: Number of Programs that Experienced the SRC

SRCA Workshop (II) focused on these
Approximately 33 participants representing government and industry

Non-OSD participants included…

- Government
 - Col Horejsi, US Air Force (PEO)
 - Mr. George Mooney, USAF CSE
 - Ms. Kathy Lundeen, DCMA
 - Mr. John Snoderly, DAU

- Industry
 - Mr. Bob Rassa, NDIA/Raytheon
 - Mr. Brian Wells, Raytheon
 - Mr. Rick Neupert & Mr. Jamie Burgess, Boeing
 - Mr. Stephen Henry, Northrop Grumman
 - Mr. Per Kroll, IBM
 - Mr. Paul Robitaille, Lockheed Martin
 - Dr. Dinesh Verma, Stevens Institute of Technology
 - Mr. Dan Ingold, University of Southern California
Primary SRCA Workshop II objective:
- Formulate systemic root cause recommendations

Participants focused on manageable subset of analysis results
- 2 CRC areas and their top 4-5 SRCs
Root Cause Model (e.g., Poor Business Practices)

<table>
<thead>
<tr>
<th>Source</th>
<th>Systemic Root Cause (Top 4)</th>
<th>Core Root Cause</th>
<th>Solution Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Management Process</td>
<td>Core Root Cause</td>
<td>Policy/Guidance</td>
</tr>
<tr>
<td></td>
<td>Technical Process</td>
<td></td>
<td>Education & Training</td>
</tr>
<tr>
<td></td>
<td>Contract Structure & Execution</td>
<td></td>
<td>Best Practices</td>
</tr>
<tr>
<td></td>
<td>Requirements</td>
<td></td>
<td>Governance</td>
</tr>
</tbody>
</table>

Recommendations Must Address Root Causes at Their Source
Initial Thoughts on Systemic Improvement...

Systemic Root Cause Analysis Recommendations

- Policy/Guidance
- Education & Training
- Acquisition Practices (Planning)
- Acquisition Practices (Incremental Toll Gates & Reviews)
- Requirements Process
- Management Process (IMP/IMS/WBS)
- Management Process (Execution)
- Best Practices
- Governance
- Technical Process
- Organization
- Communications
- Management Process (Incentives +/−)
SRCA Workshop Part II - Results

- Over 50 recommendations
 - Varied level of detail
 - Directed at variety of sources
 » Acquirer & Developer
 » PM, PEO, Comp. Rep., Acq. Exec
 » Senior Management to Systems Engineer

Industry panel will discuss top 5 next!
Next Steps

• Develop Action Plan
 – Prioritize the emerging recommendations
 – Assign stakeholders
 – Establish timelines
• Complete analysis on remaining CRC areas
• Formalize NDIA Working Group to continue recommendation development on CRC analysis
Questions/ Discussion

Contact Information:

Dave Castellano
ODUSD(A&T) Systems & Software Engineering
Deputy Director, Assessments and Support
David.Castellano@osd.mil

Laura Dwinnell
SSE/AS Support
Systemic Analysis Team Lead
LDwinnell@fasi.com
Systemic Root Cause Analysis

Industry Panel Discussion

Panel Moderator: Mr. Bob Rassa

Dave Castellano
Deputy Director, Assessments and Support

Laura M. Dwinnell
Systemic Analysis Team Leader

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense
for Acquisition and Technology

23 October 2007
Industry Panel Members

- Mr. Stephen Henry
 - Northrop Grumman: Principal Engineer
- Mr. Brian Wells
 - Raytheon: Chief Systems Engineer
- Mr. Per Kroll
 - IBM: Manager - Methods IBM Rational
- Mr. Paul Robitaille
 - Lockheed Martin: Director of Systems Engineering
 Lockheed Martin Corporate Headquarters;
 President, INCOSE
- Mr. James Burgess
 - Boeing: Systems Engineering Senior Manager,
 Leader of the Boeing Systems Engineering Best
 Practices Initiative Boeing Integrated Defense
 Systems
5 “Heavy Hitter” recommendations include:

1. Increase or improve competition – down select at SRR/PDR/CDR

2. Provide mechanisms for better performance & Implement consequences for non-performance
 » Increase use of toll gate reviews with off-ramps and specific guidance/requirements

3. Ensure better definition and verification of requirements. E.g. use meta-language, SE-based modeling, etc.

4. Require more close coupling of the IMPs/IMS/WBS

5. Increase acquisition workforce and expertise
 » Use “green teams” to augment needed acquisition expertise
When is Extended Competition Cost Effective?

<table>
<thead>
<tr>
<th>Program Complexity & SW Growth</th>
<th>ATP</th>
<th>SRR</th>
<th>PDR</th>
<th>CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium High Complexity Holchin Level 7*</td>
<td>188%</td>
<td>144%</td>
<td>122%</td>
<td>111%</td>
</tr>
<tr>
<td>Down Select Cost Savings Medium High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Low Complexity Holchin Level 3*</td>
<td>144%</td>
<td>122%</td>
<td>111%</td>
<td>106%</td>
</tr>
<tr>
<td>Down Select Cost Savings Medium Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* SW Growth Based on Holchin Growth Curve Average Growth
Questions/Discussion

Contact Information:

Dave Castellano
ODUSD(A&T) Systems & Software Engineering
Deputy Director, Assessments and Support
David.Castellano@osd.mil

Laura Dwinnell
SSE/AS Support
Systemic Analysis Team Lead
LDwinnell@fasi.com