The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.
Generic Sensor Model (GSM)

OVERVIEW

- Model Description
- Operating Modes
 - Stand-Alone
 - System-of-Systems
- Model Components
- Model Flow
- Model Flexibility
 - Extensibility
 - Changeable Components
 - System Adjustable Parameters
- Analyses
The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

MODEL UTILITY

- Scenario Testing
- Algorithm Testing and Comparison
- Interoperability Evaluation
- Mission Planning
The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

FEATURES

- Event Driven
- Parameter Based
- Scalable
- Modular
- Extensible - Uses Object Oriented Design (C++ based)
- Can Incorporate Tactical Software
- Can be Incorporated into system-of-systems environment (High Level Architecture (HLA) interface)
- Fidelity - configurable from low to high
- Unclassified
The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

COMPONENTS

- HLA Interface
- Beam Scheduling
- Ray Trace Beam Propagation
- Detection Processing
- Tracking
- Cueing
- Communications
- Data Logging
- Dynamic Environment (Atmosphere, Weather, clutter)
- Terrain maps (DTED)
The Generic Sensor Model (GSM) is a collection of core software components (classes) used as the foundation for developing radar simulation models.

OPERATING MODES

Stand-Alone Mode
- All inputs via XML and data files
- All outputs to log files
- Operates on a single Windows™-based platform

System-of-Systems Mode
- HLA federated configuration
- Operates in Lockheed Martin’s Integrated Missile Defense Testbed (IMDT)
Integrated Missile Defense Testbed (IMDT™)

IMDT Addresses All Phases of BMDS Mission

1. Plan the Battle – Integrated Defense Planner (IDP)
2. Fight the Battle – IMDT Federation
3. Assess the Battle – Post-Simulation Analyses

IMDT Provides Accurate BMD Planning, Performance And Evaluation Support
Integrated Missile Defense Testbed (IMDT™)

IMDT Federation

- **Distributed high-fidelity system-of-systems modeling and simulation testbed for BMD**
- **HLA and the GV-Net™ allow distribution of the simulation models to their developers’ (subject matter experts’) locations**
- **Includes sensor, weapon systems, communications, and C2BMC high-fidelity models. System controller, analysis suite, and visualization.**
Generic Sensor Model (GSM)

IMDT™ Distributed Network

GVNet™
Generic Sensor Model (GSM)

Generic Sensor Model Transmit Event Flow

[Diagram of a flowchart showing the transmit event flow process]
Generic Sensor Model (GSM)

Generic Sensor Model Event Processing
Generic Sensor Model (GSM)

Generic Sensor Model Components

- **Physics-Based Components**
 - Beam scheduling
 - Beam propagating
 - Signal calculations
 - Tracking

- **Effects-Based Components**
 - Measured state
 - Single-scan correlation
 - Multi-scan correlation
Generic Sensor Model (GSM)

Generic Sensor Model Components

Copyright 2007 Lockheed Martin Corporation
Generic Sensor Model (GSM)

Generic Sensor Model Components

Flexibility and Extensibility

- **Beam Scheduler**
 - Phase / Rotate
 - Phase / Phase
 - Phase / Phase / Rotate
 - Track Filter
- **Kalman Filter**
 - Interacting Multi-Model (IMM)
 - Non-Linear Ballistic Model
- **Model Extensions**
 - External Cue
 - IFF
Generic Sensor Model (GSM)

Generic Sensor Model Parameter Examples

- **Sensor**
 - Transmitter – power, duty cycle, …
 - Antenna – size, element count, …

- **Waveforms**
 - Selection
 - Beam Parameters – frequency, bandwidth, …

- **Tracker Characteristics**
 - Initial Conditions – weights, …
 - Operating Parameters – time constants, …

- **Threats**
 - Number
 - Characteristics
 - Trajectories
Generic Sensor Model Analyses

- **Component Performance Analyses**
 - Detections – SNR, P_D, ...
 - Tracker – initiate track, drop track, ...

- **Algorithm Analyses**
 - Baseline updates
 - Extended functionality

- **Mission Planning**
 - Assumption verification
 - Parameter development

- **Scenario Analyses**
 - Targets – number, location, type, ...
 - Assets - number, location, type, ...
 - Communications – latency, availability, ...
Generic Sensor Model Analysis Examples

- Stand-Alone Operating Mode
 - Performance assessment
 - Track initiation
 - Coverage
 - Detection probability
 - Enhanced/Modified Capability evaluation
 - Tracking
- System-of-Systems Operating Mode
 - Interoperability
Stand-Alone Mode Performance

Example

- **Individual missiles launched throughout the region of interest**
- **Missiles impact one of two cities (white, pink)**
- **Radar at a specified location**

NOTE: All data are notional.
NOTE: All data are notional.
Stand-Alone Mode Enhanced Capability

Example

- \textbf{N Monte-Carlo runs using Tracker 1}
- \textbf{N Monte-Carlo runs using Tracker 2}
- \textbf{Evaluate}
 - Probability of track initiation
 - Track initiation time
 - Track duration
 - Track drop time
 - Track quality
 - ...

\textbf{NOTE: All data are notional.}
Interoperability Video

NOTE: All data are notional.
Summary

- **Generic Sensor Model (GSM) provides a flexible, extensible framework for instantiating sensor models**
 - Object-Oriented design
 - Parametrically driven
 - Stand-Alone mode
 - Federated mode

- **Integrated Missile Defense Testbed (IMDT) provides a distributed system-of-systems environment**
 - High-Level Architecture (HLA)
 - Global Vision Network (GV-Net™)
 - Addresses all phases of the BMD mission
 - Plan the Battle
 - Fight the Battle
 - Assess the Battle