Implementing and Measuring a Test Program in a Sustainment Environment

23 Oct 07

Jim Miller
Chief Engineer
727 ACSG/EN
Phone: (405) 736-7996
james.c.miller@tinker.af.mil
What Sustainment Environment?

727th Aircraft Sustainment Group

Col. James Fulton
Commander

Ms. Jerri Hulme
Deputy Director

Mr. James Miller
Chief Engineer

PROVIDING EFFECTIVE & EFFICIENT WEAPON SYSTEM SUPPORT
727 ACSG Mission

- Single Manager for Sustainment and Modernization of
 - 250 USAF Commercial-Derivative Aircraft
 - HF Global Communications System Network
- Preserves FAA Certification and Operational Safety, Suitability & Effectiveness (OSS&E) of Commercial Derivative Aircraft
- 4 Squadrons Manage Services Acquisition

“Cradle-to-Grave CLS Support”
Weapon System Support

727th Aircraft Sustainment Group
Contractor Logistics Support (CLS)

Weapon Systems
- KC/KDC-10
- VC-25
- E-4B
- C-9
- C-12
- C-20
- C-21
- C-26
- C-38
- E-9
- T-41
- T-43
- T-51
- TG-10
- TG-15
- UV-18
- Peace Lotus
- HFGCS

Customers
- AMC
- ACC
- ANG
- AFRC
- AETC
- USAFE
- PACAF
- AFMC
- USAF ACADEMY
- AF FLIGHT STD AGENCY
- Army
- NAVY
- US MARINE CORP
- DIA
- DSCA
- FMS
- USSOCOM
727 ACSG Responsibilities

19 Weapon Systems

250 Active
41 Inactive Aircraft Mgd

19 Commands

FY07 50 PDM Scheduled

FY07 $913M Obligation Authority

56 USAF Bases
2 FMS Nations

FY07 $6.6B Contracts

727 ACSG Responsibilities
Weapon System’s Missions

- Presidential Airlift “Flying White House”
- Tanker Aerial Refueling & Airlift Support
- Intelligence Surveillance & Recon (ISR)
- Special Duty Support
- Intelligence Surveillance & Recon (ISR)
- Sea Surveillance Radar & HF Relay
- Pilot & Navigator Training & Seasoning
- MEDEVAC
- HF Communications
- Diplomatic, VIP & DV Travel
- Counter-drug Support
- Highly Survivable NMCS Node “Flying Pentagon”

727
ACSG
So What is the Problem?

• Sustainment environment different
 – Not one big pass/fail test
 – Most tests associated with mods

• Our organization had an ad hoc, contractor dependent, aircraft unique test approach

• Instigated a step-by-step Operating Instruction
 – Approach
 – Management
 – Expectations
 – Throughout the organization

• Implemented tangible approach that is:
 – Aimed at the working level
 – Applicable throughout entire organization
 – Accounts for progress through metrics
 – Always starts with requirements
Step 1: Build an Integrated Test Team (ITT)

- Program Manager formally establishes ITT in writing
 - Standard Letter

- ITT consists of, at a minimum:
 - Program Manager
 - Project Engineer
 - Center Test Authority
 - Responsible Test Organization
 - Representative from the customer
 - Representative from the contractor
Step 2: Review Lessons Learned

- Everyone thinks their test is unique—but they are usually wrong
- Review established lessons learned for:
 - Quantifiable criteria (e.g. noise)
 - Testing Techniques (e.g. analysis, M&S...)
 - Test Methods
 - Previous Problems
 - Operational Scenarios
Step 3: Define Test Requirements

- Review established Requirements Correlation Matrix (RCM)
 - Ensures test requirements has direct link to source requirements
- For each requirement ask:
 - Is it quantified?
 - Is it verifiable/testable/measurable?
 - What verification method?
- If need be, send requirements back to program manager for clarification
- For risky verifications/testability, send risk to Risk Management Team
• Break initial requirements down into a Requirements Correlation Matrix (RCM):
 – Spreadsheet with following columns:
 • Requirement
 • Requirement Source
 • Derived Requirements
 • Quantification
 • Operational Conditions
 • Initial Risk Assessment

• Give RCM to
 – Test Team for their planning
 – Risk Mngt Team for their planning
<table>
<thead>
<tr>
<th>Req Title</th>
<th>Req Source</th>
<th>Derived Req</th>
<th>Req Definition</th>
<th>Quantification</th>
<th>Op Cases</th>
<th>Risk (R/Y/G)</th>
</tr>
</thead>
</table>

Program Manager

Project Engineer(s) (Gov & Contr.)

User

Entire Team
Step 3: Define Test Requirements

- Review established Requirements Correlation Matrix (RCM)
 - Ensures test requirements has direct link to source requirements

- For each requirement ask:
 - Is it quantified?
 - Is it verifiable/testable/measurable?
 - What verification method?

- If need be, send requirements back to program manager for clarification

- For risky verifications/testability, send risk to Risk Management Team
Step 4: Develop Test Metrics

- Three minimum metrics
 - Test Requirements Metric
 - Test Risk Management Metric
 - Deficiency Report Metric
 - Required only during the Test Execution Phase
- Update the RCM
- Metrics shown to management at quarterly Weapon Systems Review
 - Shown elsewhere as required (PMRs, PDRs, CDRs, TIMS, TRRs, etc)
Test Requirements Metric

Management Emphasis

- Total # of Requirements
- Quantified
- # Verifiable
- Resource Assigned
Test Risks Management Metric

Test Risks Management Metric

- Date 1
- Date 2
- Date 3
- Date 4
- TRR

Legend:
- Green: Low
- Yellow: Med
- Red: High
- Blue: Closed / Mitigated
Deficiency Metric Report

Deficiency Report Metric

Date 1	Date 2	Date 3	Date 4
Open Cat 1 | Open Cat 2 | Closed

Legend:
- Red: Open Cat 1
- Yellow: Open Cat 2
- Blue: Closed
Step 5: Create TES or TEMP

- Tailored to size of project
- Documents strategy for conducting test
- Documents Roles and Responsibilities
 - How Redlines handled
 - How DRs handled
 - Use of TIMs
 - Scheduled Test Events (TRB, TRR, etc.)
 - Mishap Accountability
- Rationale for test verification methods (inspection, analysis, demonstration, test)
Step 6: Integrate Test Plan IMS & Funding

• Program Manager will:
 – Ensure the test program schedule in the TES/TEMP is incorporated into IMS
 – Work with contractor’s processes/timelines— not duplicative
 – Ensure appropriate test program funds are available to support TES/TEMP
 – Schedule technical interchange meetings as required

End of Planning Phase
Step 7: Technical Reviews

• Testing Addressed in Periodic Reviews
 – System Requirements Review
 – System Design Review
 – Preliminary Design Review
 – Critical Design Review
 – Safety Reviews

• ITT meets periodically to review that all requirements are:
 – Tested
 – Quantified
 – Verifiable/testable/measureable
 – Resourced
 – Risks mitigated

Design Phase
Step 8: Update TES/TEMP

- Update at, or immediately after, each review
- Update RCM as required
- Update all metrics
Step 9: Test Readiness Review (TRR)

- TRR required before any formal test
- OI has a clear checklist for TRR
 - Approved test procedures
 - Test scheduled defined
 - Hardware installation complete
 - Software configuration is stable (passed FQT)
 - Support requirements defined and scheduled
 - Test team identified
 - User training integrated
 - Mishap accountability identified
 - Etc.

Execution Phase
Step 10: Test Execution

• Execute the Test
• Document Deficiencies
 – Important to have a formal process
 – Hold deficiency reviews
 – Correct deficiencies
 – Retest the system
E-4B 1677 MB1 Deficiencies
VHF/FM Red to Black Audio (DRB-139)

<table>
<thead>
<tr>
<th>Deficiency – Category I</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Actions to date</td>
</tr>
<tr>
<td>• During transmissions via VHF/FM through the Black Switch w/ the radio in secure mode the signal bleeds over onto the unsecure channel</td>
<td>• Identified after the installation of the new VHF/FM radio</td>
</tr>
<tr>
<td>• Not E-4 unique issue</td>
<td>– Issue identified to radio manufacturer (Wulfsberg)</td>
</tr>
<tr>
<td>– Proposed solution part of s/w release for all fielded radios</td>
<td>– Wulfsberg identified a s/w solution</td>
</tr>
<tr>
<td>Requirement</td>
<td>Way Ahead</td>
</tr>
<tr>
<td>• Derived security/certification requirements</td>
<td>• Wulfsberg setting up representative test lab</td>
</tr>
<tr>
<td>Exit Criteria</td>
<td>• Scheduled to complete lab testing by 9 Dec 05</td>
</tr>
<tr>
<td>• Transmit via VHF/FM through the Black Switch w/ the radio in secure mode without the signal bleeding over onto the unsecure channel</td>
<td>• A/C integration testing scheduled by 16 Dec 05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funding</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding: Solution covered under warranty</td>
<td>Aggressive: 28 Nov 05</td>
</tr>
<tr>
<td>POC: John Smith (E-4 SPO) DSN: 336-2547</td>
<td>Moderate: 6 Dec 05</td>
</tr>
<tr>
<td></td>
<td>Low Risk: 6 Jan 06</td>
</tr>
</tbody>
</table>

Updated: 16 Nov 05 CU
Step 11: Test Report and Lessons Learned

- Tests are not snowflakes
- Lessons Learned repository contains:
 - Possible tests to consider
 - Potential test plans
- Repository is not program specific, but for entire organization
- Future plans are to make the lessons learned repository a database with keyword searches
What’s Next

• Continue implementation throughout organization
• Continue Measure/Track results
• Populate Lessons Learned database
• Refine as needed
• Document successes
 – We are having some!

Test Management can be implemented, applied AND make a difference
Summary

- 727th ACSG developed grass-roots means to implement Test Management as part or our Systems Engineering in Sustainment Environment
- Clear-cut, tangible processes steps for the working-level
- Metrics to measure progress for management
- It works

In Place and In Use Now
Questions?