GENERAL DYNAMICS Armament and Technical Products

XM307 ACSW Dual Feeder and Receiver Design for Rough Handling

Presented by:

Brian L. Hatin Principal Mechanical Engineer, Design General Dynamics Armament and Technical Products Burlington, Vermont USA (802) 657-6543 <u>bhatin@gdatp.com</u>

DISTRIBUTION A - Unlimited

XM307 ACSW Dual Feeder

Receiver Design for Rough Handling

XM307 ACSW Dual Feeder

Overview

- Key Requirements
- Design Approach

- Ammunition Select Sequence
- Analytical Model and Test Correlation

Summary

XM307 Remotely Operated Variant (ROV)

- Light weight remotely operated dual feed weapon
- Provides armament for modern, light weight manned and unmanned vehicles
- First round selectable under 2 seconds
- Enable engagement with Armor Piercing (AP) or High Explosive Air Bursting (HEAB) 25 mm Ammunition

GENERAL DYNAMICS Armament and Technical Products

XM307 ROV

Key Requirements

HEAB capability with either feed path

- Remotely change feed paths with first round response
- Weapon self powered operation

Design Approach

Develop integrated dual feed weapon

Validate design with concept hardware

Create analytical models

 Evaluate design and correlate analysis predictions to concept test results

Ammunition Select Sequence

Live Fire Concept System Test

Successfully test fired TP ammo from both feed paths

Analytical Model and Concept Test Correlation

- Functionality validated on Proof of Concept feeder assembly
 - Static and dynamic feed and clear
 - Round stripping and chambering
 - Belt select mechanism
 - Power select mechanism
- Concept test results correlated to analysis model predictions
- Verified analytical tools and test hardware reduced risk for objective dual feeder design

Successfully completed preliminary design phase

- Dual feeder concept hardware functioned per design intent
- Analytical models correlated to concept test results

 GDATP's proven design methodology provides a solid foundation for future weapon development

Receiver Design for Rough Handling

Requirements

- Objectives
- Analysis and Test Method
- Analytical Model and Test Correlation

Summary

Requirements

Shall operate after 5 foot drop in 5 orientations

No degradation to safe operation

Objectives

Develop analytical methodology

- Allows weapon reactions to be predicted and evaluated
- Can be used for detail design of the weapon

Develop Receiver configuration

- Maintains alignment and timing of the machine gun mechanism
- Allows the weapon to survive repeated 5 foot drops

Validate the design approach and analytical methodology

Analysis and Test Method

- Analysis methodology
 - Flexible body system level model created using FEA and flexible body analysis software
 - Simulated a 5 foot free-fall on a concretebacked steel plate
 - Component CG accelerations used for detailed component design
- Drop a mockup weapon
- Evaluate alternate materials
- Data collection
 - Accelerations
 - Reaction loads between weapon components
 - Reaction strains in the receiver

Drop Orientations

GENERAL DYNAMICS Armament and Technical Products

45° Muzzle Down

Tests Conducted

• 69 drops were completed

- ► 3 Materials
- 4 orientations
- ► 8 heights

Drop Height	Material 1 Drop Orientation			Material 2 Drop Orientation			Material 3 Drop Orientation			
	Horizontal	45° Nose Down	45° Aft Down	Horizontal	45° Nose Down	45° Aft Down	Horizontal	45° Nose Down	45° Aft Down	Vertical Aft Down
6	Х	XX	Х							
12	Х	Х	Х	Х	Х	Х	Х	Х	Х	
24	Х	Х	XX	Х	Х	Х	Х	Х	Х	
30										Х
36	XX	Х	Х	Х	XX	Х	Х	Х	Х	
48	Х	Х	Х	Х	Х	Х	Х	Х	XX	
60	Х	Х	Х	XX	XX	XX	XXXXXX	XXX	XXXX	X
78							Х			

GENERAL DYNAMICS

Armament and Technical Products

Drop Test Video

Weapon mockup reaction to rough handling drop test
5ft height, 45° Aft Down Drop Orientation

Test Results Material Summary

- Material 2 shell cracked after 19th drop
- Material 3 shell did not crack after 29 drops

Analysis vs. Test Results CG Accelerations

Analytical CG accelerations correlated with test results

Drop Oriontation	CG Acceleration, G's				
Drop Onentation	Test	Analysis			
Horizontal	497	489			
45° Muzzle Up	309	344			
Vertical Muzzle Up	614	626			

Analysis vs. Test Results Strain

 Analysis method predicts failure at bottom center

 Receiver shell cracked at bottom center

Summary

 Receiver concept provides 5 foot drop capability

Analytical methodology is a proven design tool

 GDATP's Methodology applied to develop lightweight objective weapons
 Will meet severe rough handling requirements
 Currently in fabrication

GENERAL DYNAMICS Strength On Your Side[™]

Brian L. Hatin Principal Mechanical Engineer, Design General Dynamics Armament and Technical Products 128 Lakeside Avenue Burlington, VT 05677 (802) 657-6543 bhatin@gdatp.com

Stephanie Dewing Mechanical Engineer, Design General Dynamics Armament and Technical Products 128 Lakeside Avenue Burlington, VT 05677 (802) 657-6479 sdewing@gdatp.com

Ryan Henry Mechanical Engineer, Analysis General Dynamics Armament and Technical Products 128 Lakeside Avenue Burlington. VT 05677 (802) 657-6435 rhenry@gdatp.com

www.gdatp.com