Heavy Machinegun Fire Control as a Distributed Operations Enabler

9 May 2007

Joseph Brus
Expeditionary Warfare Division
Naval Surface Warfare Center Crane
joseph.brus@navy.mil
812-854-2314

Bill Shaff
Systems Engr Lead
william.shaff@navy.mil
812-854-3618

Russ Thies
Mechanical Engr Lead
russ.thies@navy.mil
812-854-5584

Harnessing the Power of Technology for the Warfighter

Distribution Statement A: Approved For Public Release; Distribution Unlimited
Background

• Request from ONR Code 30 Fires to address 40mm Indirect Fire feasibility as part of Improved Fire Control Systems FNC

• Proof of Concept demonstrator built and tested in late FY03
 – COTS components
 – In-house software
 – MCWL weapon/ammo/test support
Technical Approach

- Ballistic kernel calculates targeting solution using
 - Target & weapon geo-location
 - Inertial sensor for weapon attitude
 - MET data
- Provides aiming parameters to gunner when firing from defilade
- Lobbing trajectory allows substantial mask clearance at longer ranges
 - Hills
 - Trees
 - Buildings
40mm Range/Trajectory

Low Angle Solution Only

Low and High Angle Solutions Possible

(not to scale)
Proof of Concept Test

• Demonstrated 40mm Indirect Fire Proof of Concept
 – Used GD 40mm ALGL as test platform
 – Accurate to full range of weapon
 – Promising results exceeded user expectations

• Improvements needed
 – High-angle ballistic profile
 – Hardware integration
 – Software usability
 – Gunner interface

Hawthorne, NV, 2003
Emerging Guidance

• Marine Corps Improved Heavy Machinegun (IHMG) UNS
 – Signed Nov 2003 by BGen Neller
 – Validated by DOTMLPF working group Feb 2004
 – Improved .50 cal and 40mm weapons
 – Common compatible mount w/ quick slewing capability
 – Direct and Indirect Fire Control with integral LRF
 – Common optics bench for current/emerging inventory sights

• Addresses Expeditionary Maneuver Warfare Capability Gaps
 – Enhance capabilities of infantry heavy weapons by incorporation of advanced fire control technologies.
 – Provide all-weather, fully integrated, and continuous lethal and non-lethal fires with extended range, volume, and accuracy.
 – Develop means to reduce time delay from target detection to identification and from target identification to engagement.
 – Provide extended, coordinated, and sequenced joint fires in support of maneuver elements.
HMG Indirect Fire History

- Used effectively in WWI & WWII - “rain of slugs”
- Occasional use in Korea
- Foliage of Vietnam reduced opportunities
- New mounts did not facilitate high angles
- Instruction/Training lacking
 - Time and Ammunition intensive
 - .50 cal Indirect Fire is a lost art - no longer taught
 - 40mm Indirect Fire only taught at MC Advanced Machinegun leaders course
 - 45 minutes to set up a mission
 - Lucky to hit within a football field on first shot
- Lack of doctrine for accurate, coordinated, and timely employment
- Loss of expertise due to lack of use
Technology Opportunity

- Major transformation for Heavy Machineguns
 - Extends practical useable range of weapons
 - Enables timely execution of accurate indirect fire
 - Increase in first round accuracy for direct fire

- Radical enhancement of CONOPS
 - Ideal for current conflicts & MOUT engagements
 - Situational awareness for heavy machinegun teams
 - Networked Fire Control allows
 - Direct sensor-to-shooter link
 - Call for fire support on targets of opportunity
 - Collaborative attack capability
Project Sponsors

- Office of Naval Research (ONR)
 - Expeditionary Maneuver Warfare Department
 - Fires Thrust Area

- Marine Corps Warfighting Lab (MCWL)
 - Technology Division
 - Ground Combat Element Branch
Team Responsibilities

• Technology Transition Agreement between ONR, MCWL, & MCSC signed June 2004
 – NSWC Crane (ONR Design Agent)
 • Fire control development
 • Communications / networked fires interoperability
 • Overall system integrator
 • Coordinate technology demonstration
 – MCWL
 • Advanced Common Mount (ACM) development
 • Evaluation of MK19 replacement candidates
 • Weapon, ammo, and range support for tests and demos
 • Operational demonstrations
 • Funded fire control completion and system verification test in FY06
Indirect Fire Employment

Forward Observer (FO)

FO Determines Target’s Location and Adjust Fires

HMG with DF/IF capability

FO relays Targeting information

Fire orders sent via JVMF

FSCC

Harvesting the Power of the Technology for the Warfighter
Direct Fire / Sensor Employment

HMG with DF/IF capability

HMG determines target’s location using LRF, IMU, and GPS

FSCC

Radio

IMU + GPS

Mission computer

LRF

HMG sends digital target information via JVMF

FSCC

Fire orders sent via JVMF

Fire support asset delivers ordnance

Enemy target

Harnessing the Power of Technology for the Warfighter
Distributed Operations Enabler

• Provide the ability to distribute or re-aggregate depending on the threat.
• Provide the ability to quickly and accurately engage targets using a distributed processing architecture.
• Provide collaborative and coordinated engagement of targets.
• Provide teams that are multifunctional (sensor, shooter, and/or comms relay).

• Provide multiple teams a coordinated, interdependent approach to intelligence gathering, situational awareness, and target identification/location.
Distributed Ops Application
HMG Fire Control on CCM

- Weapon Attitude Sensor
- PLGR or integrated SAASM
- Computing Platform
- Optical Quadrant Deck
- Gunner’s Display

Common-Compatible Mount w/ std T&E
HMG Fire Control on ACM

Vehicle Mount

Dual Range Pedestal High

Dual Range Pedestal Low

Gunners Display

Optical Quadrant Deck

Team Leaders Display

Computing Platform

Advanced Common Mount with Integrated T&E and Trigger Mechanism
Optical Quadrant Deck

Motorized Direct Fire platform keeps eyes on while engaging targets

- MIL-STD-1913 rail mounted optic
- Pressure/Temperature Sensor
- SLAM-R Software Controlled LRF Module
- Motor pans optics array to calculated QE
Computing Platform

Hot Swappable BA-5590 Form Factor Battery Power

L1/L2 GPS Antenna

Shock Mounted PC-104 Stack
- Single Board Computer
- Solid State Hard Drive
- SAASM Compliant GPS
- Tactical Radio Interface
- 8-port Serial Card

Vehicle Power Interface/Conditioning

OQD Motor Controller

Harnessing the Power of Technology for the Warfighter
Squad Leaders Display - CJMTK

Harnessing the Power of Technology for the Warfighter

Distribution Statement A: Approved For Public Release; Distribution Unlimited
Squad Leaders Display - Fixed

Harnessing the Power of Technology for the Warfighter
Gunners Display

Weapon Aiming Cues

System Data Interface
Test conducted by MCPD Fallbrook at Hawthorne, NV in Sept 2006

- Test system performance against TTA exit criteria.
 - 40mm HK GMG and M2HB .50cal
 - Direct Fire and Indirect Fire engagements
 - Low and High QE 40mm
 - Average Radial Error for accuracy
 - CEP for burst fire precision
.50 cal Direct Fire @ 1400m

1400m, Direct Fire, Burst Mode

- Burst 1
- Burst 2
- Burst 3
- Initial Target
- Adjust Fire
- Gun-Target Line

Harnessing the Power of Technology for the Warfighter

Distribution Statement A: Approved For Public Release; Distribution Unlimited
.50 cal Direct Fire @ 4000m
.50 cal Indirect Fire @ 4800m
40mm Direct Fire @ 1600m

1600m, Direct Fire, Low Angle, Single Shot Mode

- Initial Target
- Adjust Fire
- Gun-Target Line
40mm Direct Fire @ 1600m
40mm Indirect Fire @ 1600m
HMG TTA Exit Criteria

<table>
<thead>
<tr>
<th>Attribute/Parameter</th>
<th>Current</th>
<th>Threshold</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Weight</td>
<td>150 lbs – foot mobile with 3 Marines</td>
<td>Shall not increase number of personnel needed to transport weapon</td>
<td>Shall not add more than 10 pounds total to weapon system</td>
</tr>
<tr>
<td>Indirect Fire Engagement Time - ground</td>
<td>Greater than 15 minutes</td>
<td>Less than 7 minutes</td>
<td>Less than 2 minutes</td>
</tr>
<tr>
<td>Indirect Fire Engagement Time - vehicle</td>
<td>No Capability</td>
<td>Less than 7 minutes</td>
<td>Less than 2 minutes</td>
</tr>
<tr>
<td>40mm Indirect Fire Accuracy - first shot</td>
<td>Radial error greater than 200m</td>
<td>Average radial error < 50m</td>
<td>Average radial error < 15m</td>
</tr>
<tr>
<td>40mm Indirect Fire Accuracy - first adjust</td>
<td>Unknown</td>
<td>Average radial error < 15m</td>
<td>Average radial error < 5m</td>
</tr>
<tr>
<td>40mm Fire Precision - automatic fire</td>
<td>Unknown</td>
<td>Achieve CEP < 50 m</td>
<td>Achieve CEP < 15 m</td>
</tr>
<tr>
<td>.50 cal Indirect Fire Accuracy - first burst</td>
<td>No Capability</td>
<td>Achieve beaten zone impact within 100m of target</td>
<td>Achieve beaten zone impact within 50m of target</td>
</tr>
<tr>
<td>.50 cal Indirect Fire Accuracy - first adjust</td>
<td>No Capability</td>
<td>Achieve beaten zone impact within 50m of target</td>
<td>Achieve beaten zone impact on target</td>
</tr>
<tr>
<td>.50 cal Direct Fire accuracy on first burst</td>
<td>Unknown</td>
<td>Achieve beaten zone impact on target at 75% of weapon’s maximum effective range (1400m)</td>
<td>Achieve beaten zone impact on target at 110% of weapon’s maximum effective range (2000m)</td>
</tr>
<tr>
<td>Integrated Fire Control</td>
<td>No automated fire control for indirect fire</td>
<td>Provide onboard fire control using HMG-unique BK</td>
<td>Provide onboard fire control using integrated NABK</td>
</tr>
<tr>
<td>Networked Fires Connectivity</td>
<td>Voice only.</td>
<td>External connectivity to higher echelons via JVMF encoded messages</td>
<td>Same as threshold.</td>
</tr>
</tbody>
</table>
Results Summary

• Achievable effects on target on initial engagement
• Consistent effects on target after first adjustment
• Low angle accuracy is better than High angle, but allows for less mask clearance
Potential Enhancements

- Improved inertial sensor
 - Smaller/lighter
 - Improved accuracy
 - Greater shock tolerance

- Ammunition improvements
 - More consistent muzzle velocity
 - Less variance from propellant temp

- Wind compensation
 - Improved collection of wind data
 - Better incorporation of wind data into BK
Questions?

For more Information:

Joseph Brus
NSWC Crane
joseph.brus@navy.mil
812-854-2314

Capt Mike Vorgang
Marine Corps Warfighting Lab
roland.vorgang@usmc.mil
703-432-0450

Maj Michael Ries
Office of Naval Research
michael.ries@navy.mil
703-696-2572