People throughout the trusted, dependable and ubiquitous network are empowered by their ability to access information and recognized for the inputs they provide.
Topics

- **GIG Basis**
 - Vision and Objectives
 - Overall architecture and GIG structure

- **Key GIG Tiers**
 - Transport
 - Enterprise Services
 - Applications
 - Illustrate how SOA operates in the GIG architecture

- **C2 Structures – New (SOA) vs Old (Tightly coupled)**
 - Technical approach
 - Implementation aspects
 - Future direction

- **GIG delivery considerations**
 - Commercial and military
 - Differences in IT approaches
Topics

- The GIG Architectural Construct
 - Feature attributes of the GIG and netcentricity
 - Differences from past implementation approaches to the future GIG
- C2 Architectural Perspective
 - New C2 governance and implementation approaches
 - The relationship of C2 within the GIG
 - The importance of SOA and SLA to C2
 - Critical consideration of data to C2
- Understanding the Transport Layer
 - A key enabling element for C2
 - The separation of transport and C2 applications
- Identifying How C2 is Enabled by the Network
 - Tactical edge approaches to networks
- The future C2 application set is NECC
 - Characteristics and implementations
The GIG is All About

Information

- Assured
- Timely
- Highly Available
- Right - Needed

The NII emphasis is shifting from the establishing transport programs to the network, services and applications perspective.
Net-Centric Vision *(Define the End Point)*

- **Vision – Power to the Edge**
 - People throughout the trusted, dependable and ubiquitous network are empowered by their ability to access information and recognized for the input they provide.
 - To enable and empower people at the edge of the network

- **Goals**
 - **Goal #1** – Make information available on a network that people can depend upon and trust
 - **Goal #2** - Populate the network with new, dynamic sources of information to defeat the enemy *(post before you process)*
 - **Goal #3** - Deny the enemy comparable advantages and exploit weaknesses

- **A robust networked force leads to information sharing**
 - Enhancing the shared situational awareness in support of the commander’s intent

- **Achieved by leveraging the commercial information transformation**
 - Information is more than a technology
 - Evolution of capability – being measured daily

GIG Perspective
Information & the GIG - Layered Perspective

IA & Nwk Mgmt are critical components

- Loosely coupled applications based upon SOA/SLA
- Enabled applications are highly adaptive and flexible

Assured information (data) access is the critical concept – the user sets the information access requirements
A GIG Functional Dissection

The Layers are not sequential as layered perspective
- Services and application layer rarely are interfaced (I/F) directly
- Transport has minimally knowledge or intelligence while application is knowledge element

User I/F to an application – the application contains information and transportation requirements
Enterprise Service offers a data storage and location capability among numerous other services
Global Information Grid (GIG) Transport Tiers

- **Tier 1** – Backbone (GIG-BE, TSAT, Teleports)
- **Tier 2** – Intermediate (WIN-T, JTRS, WGS)
- **Tier 3** – Edge (JTRS, MUOS)

GIG is an IP unified network having a BLACK routing and switching basis – tier in many respects as commercial networks.
Key GIG Communications Network Component Programs

- DISN-NG (GIG-BE)
- SATCOM
 - TSAT & AEHF
 - WGS - WIN-T/JNN
 - MUOS
 - HC3, NMT, FAB-T
- Tactical terrestrial equipments / networks
 - JTRS
 - WIN-T
 - CDL and variants

SatCom Perspective

Additional JTRS connectivity not shown
The GIG is more than an all IP unified network - contains architectural security (IA) based on an integrated IA enterprise solution.

System IA challenges:
- BLACK IP routing
- Key management
- Data and CDS access
- Application assurance

Solution – Integrated IA

GIG Perspective

GIG Transport Tiers and IA
Securing The Network: Using High Assurance IP Encryptor (HAIPE)

IA is not confined to the transport mechanism, but includes the key enterprise services including access and CDS considerations.
Incomplete Network Solution - Losing Sight of the Network

Network Topology Relationships

Tier 1 – Backbone (GIG-BE, TSAT, Teleports)

Tier 2 – Intermediate (WIN-T, JTRS, WGS)

Tier 3 – Edge (JTRS, MUOS)

- Understanding the entire network is critical so to **not compromise a cost and warfighter effective solution** (Interoperability)
- Forcing the core and tactical edge networks to be addressed an **integrated structure**
- Network and Enterprise programs are **NOT independent**
- Network is **part of the GIG** – requires relationship to the services and applications, BUT information (data) is the critical element
- Interoperability with more than a single Service element or a partial force – total force including the **all Services and coalition forces**
DoD Services Vision

DoD Net-Centric Environment (NCE) will evolve to an enterprise SOA

- Supported by the required use of a common and shared infrastructure provided by the EIEMA
- Populated with mission and business services provided and used by each Mission Area
- Governed by a cross-Mission Area board chaired by the DoD CIO
- Managed via GIG NetOps
Deliver capabilities-based service infrastructure for ubiquitous access to timely, secure, decision quality information by edge users.

Enable information providers to post any information they hold.

Enable edge users to:
- rapidly and precisely discover and pull information resources
- dynamically form collaborative groups for problem solving

Provide security for, and coordinated management of, netted information resources.

Data interoperability versus application interoperability.
Data Strategy and Enterprise Services Tier

Data Management

- DoD Discovery Metadata Standard (DDMS) – enables visibility, understandability and trust for all posted data
- DoD Metadata Registry – one stop shop for developer data needs

Enterprise Services

- NCES - Storage, cross domain-IA security, collaboration, messaging, discovery, mediation, ESM, applications
Core Enterprise Services Delivered by NCES

Application - The set of services necessary to provision, host, operate and manage the GIG ES assured computing environment.

User Assistant - Automated capabilities that learn and apply user preferences and patterns to assist users to efficiently and effectively utilize GIG resources in the performance of tasks.

Storage - The set of services necessary to provide on demand posting, storage and retrieval of data.

Messaging - Provides services to support synchronous and asynchronous information exchange.

Collaboration - services that allows users to work together and jointly use selected capabilities on the network (i.e., chat, online meetings, work group software etc.)

IA/Security - The set of services that provide a layer of Defense in Depth to enable the protection, defense, integrity, and continuity of the information environment and the information it stores, processes, maintains, uses, shares, disseminates, disposes, displays, or transmits.

Discovery - services that enable the formulation and execution of search activities to locate data assets (e.g., files, databases, services, directories, web pages, streams) by exploiting metadata descriptions stored in and or generated by IT repositories (e.g., directories, registries, catalogs, repositories, other shared storage).

Mediation - services that enable transformation processing (translation, aggregation, integration), situational awareness support (correlation and fusion), negotiation (brokering, trading, and auctioning services) and publishing.

ESM - services that enable the life cycle management of the information environment and supports the performance of the NetOps activities necessary to operationally manage information flows in the information environment.
Service Oriented Architecture

Public

Data and applications available for use, accessible via services. Metadata added to services based on producer's format.

- Describes content using metadata
- Posts metadata in catalogs for discovery
- Exposes data and applications as services

Discover

Automated search of data services using metadata. Pulls data of interest. Based on producer registered format and definitions, translates into needed structure.

- Searches metadata catalogs to find data services
- Analyzes metadata search results found
- Pulls selected data based on metadata understanding

Invoke

(Bind)

Service Consumer

- Searches metadata catalogs to find data services
- Analyzes metadata search results found
- Pulls selected data based on metadata understanding

Publish

(Post)

Service Producer

- Describes content using metadata
- Posts metadata in catalogs for discovery
- Exposes data and applications as services

Enabled Infrastructure

Service Registries

- Messaging Services
- Data Services
- Transformation Services

Arch

C3-NII
The Tightly Coupled Solution Issue

- Previous system approaches emphasized tightly coupled systems having closely specified interfaces and highly optimized processing flows.
 - Unfortunately, changing a single component had effects on numerous other subsystem components.
- The JNO is supporting the newer “Internet” approach of loosely coupled systems demonstrating rapid adaptability and minimal interface interference/dependence.
C2 Applications Using Data as the Integrating Element
(The Importance of Data in an SOA Environment)

The use of data as the integrating element instead of fixed physical or database I/F offers extreme flexibility and adaptability.
Understanding the network topology is critical for determining the network performance and application – also to address the fundamental network requirements.

- Often only links solutions are determine without regard for the enterprise requirement
- The aggregated nodal information flow in relationship to the enterprise services point provides an architectural construct to the network
- Mobility of the nodes and the connectivity characteristics relative to path / link characteristics is required

The network topology becomes an important tool for determining not only the network structure and engineering focus but addressing investment and programmatic interoperability issues.

- It is critical to place the topology in a chronological perspective having a minimal three slice views
- IIA including critical protected performance is essential to the successful objectives of a GIG implementation
Data Strategy

Vision – A flexible and agile Net-Centric, environment of “many-to-many” exchanges and effective decisions

Mission – Implement a data-centric strategy allowing access to and sharing of information

Foundation

- Ensures data are visible, accessible, and understandable
- Accelerates decision making by having data where needed and when needed
- Accommodates known and unanticipated users
- “Tags” data (intelligence/non-intelligence; raw/processed) with metadata to enable discovery
- Requires data and services registries to describe, post and store
- Posts data to shared spaces for users to access based on identity and role
- Organizes around Communities of Interest (COIs) using a shared vocabulary to exchange information

Vision – A flexible and agile Net-Centric, environment of “many-to-many” exchanges and effective decisions

Mission – Implement a data-centric strategy allowing access to and sharing of information

Foundation

- Ensures data are visible, accessible, and understandable
- Accelerates decision making by having data where needed and when needed
- Accommodates known and unanticipated users
- “Tags” data (intelligence/non-intelligence; raw/processed) with metadata to enable discovery
- Requires data and services registries to describe, post and store
- Posts data to shared spaces for users to access based on identity and role
- Organizes around Communities of Interest (COIs) using a shared vocabulary to exchange information
Past C2 Views and Implementations

Past C2 systems were tightly coupled – strong coupling to communications and database schemas.
Past C2
- Given: voice/text capability \(\rightarrow \) C2 = voice or text message \(\rightarrow \) required C3

Netcentric C2
- Given: enabling connectivity \(\rightarrow \) C2 = applications \(\rightarrow \) required data access
- Emphasis is on tagged data in a SOA structured implementation with SLAs
- Treatment of C2 as an application with emphasis on data attribute definition and data importance

C2 Verbal and Text Message

Netcentric SOA C2

Database Tightly Coupled
C2 – Links \(\rightarrow \) C3

Enabling connectivity
- Commercial implementation based on loosely coupled apps
- Data methodology enabling distributed repositories
- Service Level Agreements offered commercially
Past Typical C2 Perspective

- Database is tightly coupled with the data sources through a dedicated communications subsystem.
- All of the C2 functional components are highly dependent and tightly integrated into a highly tuned system.
Netcentric C2 Implementation

- Loosely coupled
- Data centric
- Central enterprise services
- Cost effective and simple upgrade

Application Layer:
- Data Source A -> App A
- Data Source B -> App B
- Data Source C -> App C
- Data Source D -> App D

Transport Layer:
- Communications System (Transport)

C2 Application Layer:
- C2 Control
- Decision Engine
- Command Generator
- Local Tracking & Correlator

Enterprise Data Storage and Access:
- System Control
- Data Management & Search Services
- Security and Collaboration Services
- Tracking & Correlator
ECMs Support Mission Threads

Time Sensitive Targeting Mission Thread example

The Warfighter Owns and Shapes The mission thread

Mission Thread
Find, Fix, Track, Target, Engage, Assess

Guides ECM Development
Establishes Integration Environment
Operational construct For testing & assessment

WHAT
FIND

HOW
Geospatial Information Search ECM
Operational Context ECM
Attack Analysis ECM
Weapons Target Pairing ECM
UAV Video ECM

ENFORCE
TARGET

TRACK
Future C2 Implementations

Netcentric offers C2 a total understanding of the operating environment, SA
- Structures such as SOAs using SLAs offer flexibility and adaptability
- Enterprise Services offers a loosely couple applications environment – SOA and supports a information data access
- Future C2 systems may include decision recommendations and options
 - Generation of commands based on the commanders selection
 - Estimators of threat reactions
The transformation to an SOA has enabled a massively different approach to C2 and other applications as being demonstrated by NECC.
Application Development Transformation

DISA is incorporating a different SOA development and test approach in cooperation with JC2 portfolio (JFCOM)
The use of the same process for IT products as for major development platforms forces a development turns time producing products which are already behind the commercial product capabilities.
The Almost Existing Solution Issue

- Cost impact for capabilities – which capabilities
- Not all requirements are the same
- Cyclic assessment / design approach
- Where is the issue – distributed?
- Accuracy of the capability solution vs. cost analysis
Commercial applications are driven by the availability of the network (transport) while military applications are not tied to the network as the enabling entity like the commercial equivalents.

Military applications typically drive the requirements for the transport network – worse the applications may be built upon wireline implementations.

The availability of the transport network drives the applications.
Summary

- GIG and Netcentric structures
- Enterprise Services and data strategy (access) is an enabler for future C2 applications
- C2 in the GIG is an application
- Transport is an enabler, but is separate from C2
- C2 is being transformed:
 - Loosely coupled SOA environments
 - Massive information and data access driven by COI and data tagging
 - Unified C2 enterprise approach
 - Enterprise Services and data represent the key solutions for future C2 implementations
 - New development techniques for inclusion of warfighter evaluation and assessments – based on commercial models
- New approaches in IT and GIG components