

US ARMY COMBINED ARMS SUPPORT COMMAND Materiel Systems Directorate

Onboard Vehicle Power: *Talking Points on Emerging Requirements*

2007 Joint Service Power Expo

25 April 2007

TIMOTHY RANEY The Balding Engineer Guy with Glasses, MTC Technologies, Inc.

Approved for Release by:

Fort Lee Public Affairs Office, Ms. Sharon Mulligan, 2 April 2007.

• Background.

• Onboard Vehicle Power (OBVP).

• Military Hybrid-Electric Vehicles.

• Summary.

Background

- OBVP installed on about 100 HMMWVs in Army / USMC Units:
 - 3rd Corps Support Command and 82nd Airborne Division (~2000).
 - 22nd Marine Expeditionary Unit (2005).
- Limited Operational & Technical Evaluations:
 - OBVP Concept Experimentation Program, CASCOM & ATEC 1998.
 - Final Report, CASCOM May 2001.
 - PM LTV limited technical & safety testing Sep. 2003.
 - Positive industry efforts results may not apply to military environment.
 - DoD PM MEP Export Power Specification (MEP-STD-001) 2003.
 - TACOM issued Ground Precautionary Message to Units Dec. 2003.
 - USMC PM EPS Market Surveys & Onboard Power IPT 2002-2004.
 - USMC OBVP [small] program 2004.
 - TARDEC & CERDEC [PGB] Technical Evaluations 2004-2005.
 - CASCOM Tactical Wheeled Vehicle On-Board Power Study -2005-2006.
 - USMC OBVP [medium & large] programs 2005 2007 (ongoing).

OBVP Overview

Onboard Vehicle Power

Exports AC power from an integral onboard power source to <u>external</u> <u>applications</u>. The underlying operational capability is "exporting tactical electric power". Output power has ranged to 20kW.

General Technical Approaches:

- •Belt-driven alternator.
- Shaft-driven alternator.
- •Hydraulic-driven alternator.

Technical & Operational Investigations.

USMC is investigating technical solutions and the US Army has studied the operational need. The intent is to identify technical approaches & mission applications where OBVP can provide an operational advantage.

Applications.

OBVP for tactical wheeled vehicles (TWV), developed for military environments, could power external applications throughout the Services & other Government agencies. They could export power to command & control (C2) systems much the same as conventional gensets. However, OBVP is generally limited to relatively short periods of operation compared to Tactical Quiet Generators (TQGs).

OBVP Mission Criteria

- Use when unit must minimize space needs aboard aircraft or watercraft.
- Use when powered equipment is on or near TWV.
- Use if TWV & supported systems never operate independently.
- Use when mission-critical equipment needs backup power.
- Use as auxiliary power for onboard systems when on-the-move.
- Unit must consider temporary loss of mobility given METT-T*.
- * METT-T: mission, enemy, terrain, troops available & time available

OBVP Design Criteria

Design must encompass user needs -

- Export Power MEP-STD-001.
- Power quality MIL-STD-1332B.
- Minimize fuel consumption increases.
- Minimize onboard weight and space claims.

- Endure severe operational & climatic environments.
- No adverse affect on host vehicle reliability & maintainability.
- OBVP should minimally affect cargo capacity or towing capabilities.

Sample Applications for OBVP

10kW Output

Range

- Power for maintenance & construction (power tools).
- Charging individual Soldier equipment batteries.
- •Power-on-the-move for C2 niche now filled by 5kW & 10kW auxiliary power units APUs.
- •Powering isolated company-level Command Posts for 2 to 3 days (scenario dependent).
- •Onboard power for weapons, IED-defeat & targeting systems.
- •Floodlights at security check-points.

Sample Applications for OBVP

Power for tactical unmanned aerial systems (UAS) support equipment.

Early entry forces, when high speed mobility is essential
& cannot tow gensets.

•Back-up power for Command Posts, Tactical Operations Centers (TOCs) & other activities.

•Emergency power for equipment supported by 3kW to 10kW TQGs.

Provide power to teams, patrols, convoys, during unexpected delays.

 Power for movement control teams-lights, communications, battery charging.

OBVP Operational Benefits & Drawbacks

Benefits

- Power flexibility for onboard & off-board applications
- Backup power for critical systems
- Provides power where it's unavailable
- Another power option for combatant commander
- Eliminates towed genset when that's a mission need
- Least complex to implement as a kit
- Good general purpose power option until gensets become available

Drawbacks

- TWV becomes a stationary genset
- Increased fuel needs (~30%)*
- Engine wet-stacking likely
- Space claims & increased weight
- Loss of cargo space on genset trailer
- Scheduled maintenance conflict engine hours or mileage; now both
- Added engine wear & potentially reduced system reliability

One Example

* If operated according to the Tactical Electric Power Operational Mode Summary / Mission Profile (OMS/MP)

10kW OBVP HMMWV vs. TQG Fuel Costs

- Fuel costs 10kW TQG¹ (300 hrs = peacetime genset fleet average).
 - 0.97 gal/hr X 300 hrs = 291 gals.
 - Fuel cost² = \$15.30/gal X 291 gals = <u>\$4452.00</u>
- Fuel costs HMMWV (with 10kW OBVP alternator):
 - 1.4 gal/hr X 300 hrs = 420 gals.

~44% more fuel used

- Fuel cost² = \$15.30/gal X 420 gals = <u>\$6426.00</u>

1. DoD PM MEP Handbook-Standard Family of MEP Generating Sources, 2002.

2. Fuel cost = \$15.30 per gallon, FY07 DESC-subsidized cost of \$2.30 per gallon for JP-8 and \$13.00 per gallon for handling. Fuel handling data extracted from "More Capable Warfighting through Reduced Fuel Burden", DoD Science Board Study, January 2001.

OBVP Study Conclusions

•10kW OBVP recommended for ~7% of light/medium TWV fleet based on mission needs.

- 10kW OBVP system would meet most unit needs (many applications under 10kW).
- Key operational benefit is back-up power for mission-critical systems.
- •OBVP will not reduce trailer needs; they have additional uses (cargo).
- •OBVP can supplement, but would not eliminate conventional generator sets.
- •OBVP can provide power where it's unavailable now.

OBVP Study Conclusions

•10kW OBVP increased operating costs (fuel) are significant if employment matches TEP OMS/MP.

• OBVP can augment vehicle power for platforms with more weapons & other onboard systems.

 Most likely OBVP uses include augmentation, backup & setup/teardown at operational sites.

• Mitigating the truck vs. genset functional conflicts within units can be significant.

Potential Power Generation Capability for selected TWVs in Army Fleet

Tactical Hybrid Electric Vehicles (HEV)

Many thanks to Mr. Bob Crow, Mr. Rob Roche (AMSAA) & Dr. Jim Cross, RDECOM.

Tactical H E Vs

Why haven't we fielded them yet?

Component-level progress:

•Power Electronics.

•Batteries.

•Motors.

System Progress?

~\$100M invested in HEV programs since 1995.

Many HEV components developed: motors, alternators, controls, improved semiconductors, cooling systems, etc.

Many of the basic components are almost ready to go.

But...

Two primary issues are preventing successful design and demonstration of military HEVs:

• Development of military vehicle driving cycles.

•Suitable energy storage media for a military environment.

 Drive cycle data collection acquires detailed time-sampled information on how Army TWVs are actually used.

Designers use this data for systems analysis
 design, e.g., design of military HEV propulsion batteries

• Before HEVs (no energy storage), driving cycles were not as important as they are now.

HEV propulsion battery design & life depends greatly on how the vehicle is used.

Examples of Drive Cycle Data

Inputs

Mission Inputs:

- Vehicle speed & acceleration.
- Throttle position.
- Brake pedal apply force.
- Steering control position.
- Mission equipment electrical loads (radios, turret, etc.)

Environmental Inputs:

- Terrain Types.
- Primary & secondary roads.
- Cross-country (soil composition).
- Terrain slope.
- Terrain roughness.
- Ambient temperature.
- Crew-compartment temperature.

 The Army needs to develop driving cycles that are scientifically based on vehicle usage in a tactical environment (real data from field operations).

- Accurate & well-defined driving cycles are essential to military HEV propulsion battery design.
- Without driving cycle data, poor battery design results in a vehicle that fails to achieve expected HEV benefits.

Driving cycle development begins with -

- Instrumenting vehicle fleet & collect usage data.
- Statistical analysis then defines vehicle performance & becomes input for simulations.

• Designers use these simulations to model electrical loads during HEV system development.

Result =

Efficient HEV Design That Meets User Needs.

Energy Storage

Efforts are on-going to develop large format, energy dense batteries for HEV propulsion.

Technical issues still remain:

- •Energy density, charge & discharge cycles.
- •Cell-balancing, power vs. energy density trade-offs.
- •Operating at temperature extremes and safety.

Example: Each cell must have almost identical characteristics; having essentially the same internal resistance is critical.

Energy Storage

Other Technical issues...

• Weak cells can become an electrical load and/or reduce energy content & degrade output.

• Safety - lower resistance or shorted cells can become hotter & can ignite; many existing electrolytes are flammable & lithium electrodes can be very reactive.

• Better quality control, electronic cell-balancing, cell conditioning techniques & modular battery assemblies will help resolve these issues (more work is needed).

• Existing battery candidates are not suitable for military systems that experience severe climatic extremes.

• High temps accelerate self-discharge rates & complicate thermal management. Low temps reduce battery output.

Energy Storage

- •Charge management, thermal, weight & space claim issues much greater vs. commercial HEVs.
- Military systems are much heavier
- Shock & vibration more extreme.
- Military temperatures are more extreme.

Energy Storage Issues

- Must have consistent battery chemical 'mix' (batch-to-batch & year-to-year).
- Must have consistent plate material, spacing & thickness.
- Same internal resistance for all cells (most desirable).
- Need rigorous process control & Acceptance Testing.

- Technical issues significant R&D needed for military HEV propulsion batteries.
- Scientifically based MILITARY driving cycles are needed.... Data from a tactical environment.
- Propulsion battery design relies on having accurate & detailed driving cycles.
- Without operationally derived driving cycles, vendor fuel economy claims cannot be verified.
- If the battery is undersized for the load, reliability & life suffers.
- Battery life & reliability are dramatically affected by how it is used & misused.

Tactical Electric Power Team

E-mail Addresses, MSD-CASCOM

Mr. William Perdue - william.perdue@us.army.mil Chief, Support Systems & Analysis Division.

Mr. Timothy Raney - timothy.raney@us.army.mil Senior Analyst-Tactical Electric Power (MTC Tech., Inc.)

E-mail Addresses, Project Manager-MEP

Mr. Paul Richard - paul.richard@belvoir.army.mil Acting Project Manager - Mobile Electric Power.

Mr. Alan Coady - alan.coady@belvoir.army.mil Acting Deputy Project Manager - Mobile Electric Power.

LtCol Tom Bowers USMC - thomas.s.bowers@belvoir.army.mil Product Manager - Small Power Sources, APUs & Power Distro.

LTC John Kelleher USA - john.kelleher@us.army.mil Product Manager - Medium & Large Power Sources.

www.cascom.lee.army.mil

www.pm-mep.army.mil

MEP-STD-001, General Specification, Export Power-Vehicle Mounted (to 30kW), DoD Project Manager - Mobile Electric Power, 5 May 2004.

Onboard Power White Paper, Timothy Raney, MTC Technologies, Inc., for DoD Project Manager - Mobile Electric Power, 8 September 2005.

Tactical Electric Power Operational Requirements Document, CARDS# 16125, 11 August 2004.

MIL-STD-1332B, Definitions of Tactical, Prime, Precise and Utility Terminology for Classification of the DoD Mobile Electric Generators, 13 March 1973 (reactivated 10 July 2001).

DoD Directive# 4120-11, Standardization of Mobile Electric Power Generating Sources, 9 July 1993.

MIL-STD-1275B, Characteristics of 28V DC Electrical Systems in Military Vehicles, US Army Tank-Automotive & Armaments Command, 20 November 1997.

MIL-STD 461-E, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems & Equipment, 20 August 1999.

MIL-STD-705C, Generator Sets, Engine-Driven, Methods of Tests & Instructions, 24 April 1989.

MIL-STD-1474D, Noise Limits for Army Material, 12 February 1997.

Army Regulation 700-101, Joint Operating Procedures Management and Standardization of Mobile Electric Power Generating Sources, 29 November 1999.

DoD Military Handbook-633F (Draft), Standard Family of Mobile Electric Power Generating Sources: General Description Information & Characteristics Data Sheets, May 2001.

Questions?

Thank You for Your Attention!