Lightweight 2-kW Generator with Integrated Starter Alternator (ISA)

April 25, 2007 2007 Joint Service Power Expo San Diego, CA

> Gregory Cole <u>gsc@mainstream-engr.com</u>

Mainstream Engineering Corporation 200 Yellow Place Rockledge, FL 32955 www.mainstream-engr.com

Origin of Mainstream's 2-kW Generator

- Engine Development (1991-)
 - Customer: U.S. Army RD&E Center (Natick)
 - Application: Small, diesel-powered, personal cooling system
- Alternator Development (1994)
 - Customer: U.S. Army Aberdeen / OST
 - Application: Miniature, multi-fueled generator
- Results
 - Diesel-cycle is better than Rankine, Stirling, Brayton, and converted spark ignition (gasoline)
 - Mainstream designs and produces integrated, custom machines

Advantages of Mainstream's 2-kW Generators

Solutions Through Advanced Technology™

Engineering Corporation

STREAM

Alternator integrated into engine flywheel

- smaller and lighter
- more reliable

Fan integrated into flywheel

- cools power electronics, engine head, oil sump • runs cooler - increases life
- and reliability

Custom engine and generator designs

- sized specifically for application
- not just packaging of commercial components

Evolution of Mainstream's 2-kW Generator

48 lbs unmounted

2000-05: SBIR Program to develop generator for Marine Corps' Team Portable Collection System (TPCS)

- Marines wanted 1-kW (min.) 28 VDC generator weighing less than 50 lbs
- Manual recoil starter was desired because external starting power not available for electronic start
- Voltage regulation was not required because external power conditioning system in use
- Result: 2-kW 28-VDC generator

80 lbs fully instrumented and framed

Solutions Through Advanced Technology"

Future of Mainstream's 2-kW Generator

Through Advanced Technology"

Engineering Corporation

- 2006-07: IR&D
 - Developed patent-pending ISA
 - Developing integral AC inverter with soft-start motor technology
- 2006-2007: Hybrid-Electric Refrigerated Container
 - Mainstream's generator powers a 24-VDC bus and recharges batteries
 - Demo at JOCOTAS next week

2007: Cooperative Research and Development Agreement (CRADA) with Army RDECOM

Army RDECOM to perform lab tests this summer at Ft. Belvoir

Integrated Starter/Alternator

- Electric start
- Voltage regulation
- Auto-start/stop
- Battery charging circuit
- Allows integration into 24-VDC hybrid electric systems

Army RDECOM Laboratory Tests (per MIL-STD-705C)

- Physical Characterization
- 503.1c Start and Stop Test
- 601.4b Voltage Waveform Test (Harmonic Analysis)
- 601.5 Voltage Waveform Test (Deviation Factor)
- 602.1b Voltage Modulation Test
- 608.1b Frequency and Voltage Regulation, Stability, and Transient Response Test (Short Term)
- 610.1b Voltage and Frequency Droop Test
- 619.2c Voltage Dip and Rise for Rated Load Test
- 640.1d Maximum Power Test (at 125°F)
- 650.1b Ripple Voltage Test
- 660.1d Inclined Operation test
- 661.2c Sound Level Test
- 670.1b Fuel Consumption Test
- 690.1d Endurance Test
 - Starting and Operating Test (Extreme Cold Battery Start)
 - High Temperature Test

Solutions Through Advanced Technology™ MAINSTREAM Engineering Corporation

701.1d

710.1d

٠

Physical Characterization

28-VDC Generator Comparison		120-VAC Generator Comparison			
Model	MEP-501A	Mainstream MFEG- 020028	Model	MEP-531A	Mainstream MFEG- 020120
Dry Weight	124 lbs ¹	93 lbs	Dry Weight	143 lbs ¹	118 lbs ³
Wet Weight	138 lbs ²	102 lbs	Wet Weight	158 lbs ²	127 lbs ³
Size	30" (L) ¹ 16" (W) ¹ 22" (H) ¹	18" (L) 18" (W) 20" (H)	Size	30" (L) ¹ 16" (W) ¹ 22" (H) ¹	18" (L) 18" (W) 20" (H)

¹ Army TM 9-6115-673-13&P

² http://www.pm-mep.army.mil/technicaldata/2kw.htm

³ Projected based on design

503.1c Start and Stop Test

28-VDC Generator			
	Performance Specification For Military Mobile Power Sources (0.5kW TO 15kW)	Mainstream MFEG-020028	
Start Time	Threshold – 5 min Objective – 3 min	3.3 sec	
Stop Time	2 min	3.8 sec	

608.1b Frequency and Voltage Regulation, Stability, and Transient Response Test

608.1b Frequency and Voltage Regulation, Stability, and Transient Response Test

Current test results with Mainstream's regulated generator with ISA

REA

Engineering Corporation

28-VDC Generator			
	MIL- STD- 1332B	Mainstream MFEG-020028	
Voltage - Regulation	4%	3.9% @ 100% load*3.9% @ 75% load3.4% @ 50% load2.8% @ 25% load	
Voltage – Steady- State Stability	2%	1.1 @ 100% load 1.1 @ 75% load 1.1 @ 50% load 1.1 @ 25% load 1.0 @ 0% load	

610.1b Voltage and Frequency Droop Test

619.2c Voltage Dip and Rise for Rated Load Test

Prior test results from Army RDECOM with Mainstream's unregulated generator

Solutions Through Advanced Technology**

Engineering Corporation

REAM

28-VDC Generator			
	MIL-STD- 1332B	Mainstream Unregulated Generator	
Voltage – Dip	30%	24.8%	
Recovery Time	2 sec	0 sec	
Voltage - Rise	40%	22%	
Recovery Time	2 sec	0 sec	

619.2c Voltage Dip and Rise for Rated Load Test

Current test results with Mainstream's regulated generator with ISA

Solutions Through Advanced Technology**

Engineering Corporation

STREAM

28-VDC Generator			
	MIL-STD- 1332B	Mainstream MFEG- 020028	
Voltage – Dip	30%	6.2%	
Recovery Time	2 sec	0.1 sec	
Voltage - Rise	40%	5.5%	
Recovery Time	2 sec	0.6 sec	

650.1a Ripple Voltage Test

Prior test results from Army RDECOM with Mainstream's unregulated generator

ough Advanced Technology"

Engineering Corporation

28-VDC Generator			
	MIL-STD- 1332B	Mainstream Unregulated Generator	
Voltage - Ripple	5.5%	9.4%*	

* Reduced to 2.9% with 0.16 lb capacitor

650.1a Ripple Voltage Test

Current test results with Mainstream's regulated generator with ISA

28-VDC Generator			
	MIL-STD- 1332B	Mainstream MFEG- 020028	
Ripple 0% Load	5.5%	0.55%	
Ripple 25% Load	5.5%	0.55%	
Ripple 50% Load	5.5%	0.60%	
Ripple 75% Load	5.5%	0.59%	
Ripple 100% Load	5.5%	0.63%	

Solutions Through Advanced TechnologyTM

Engineering Corporation

670.1b Fuel Consumption Test

Prior test results from Army RDECOM with Mainstream's unregulated generator

28-VDC Generator				
Load	Load	Fuel Consumption	Fuel Consumption	
(W)	(%)	(lbs/hr)	(gal/hr)	
0	0%	0.80	0.120	
425	21%	1.04	0.156	
975	49%	1.07	0.160	
1460	73%	1.23	0.185	
1990	100%	1.49	0.223	

For Comparison: "The Power Generation Branch has numbers showing some MTGs to use only 0.26 gal/hr of JP-8 at full load. The 0.33 is a fleet maximum." – Army CECOM

No Change Expected for the Following Tests

- 660.1d Inclined Operation Test
 20°
- 661.2c Sound Level Test
 - 79 dBA at 7 m
- 690.1d Endurance Test
 - RDECOM testing for 150 hrs
- 710.1d High Temperature Test
 - RDECOM will test to 135°F (previously 125°F)

Changes Expected for the Following Tests

- 640.1d Maximum Power Test
 - More efficient power converter will increase max power
- 701.1d Starting and Operating Test (Extreme Cold Battery Start)
 - ISA with electric start will allow for extreme cold weather starting

Summary

Solutions Through Advanced Technology**

Engineering Corporation

REAM

- Mainstream's 2-kW Generators
 - 28 VDC
 - 120 VAC, 60 Hz
- 39% smaller than MTG
- 17-25% lighter than MTG
- 33% more efficient than MTG
- 3-6x more reliable than MTG
- New Features:
 - ISA
 - Battery charging circuit
 - Auto-start/stop
 - Hybrid-electric ready
 - AC inverter with soft-start

Contact Information

Company Address

Mainstream Engineering Corporation 200 Yellow Place Rockledge, FL 32955

(321) 631-3550

www.mainstream-engr.com

- Points of Contact
 - Technical: Greg Cole, gsc@mainstream-engr.com
 - Contracts: Michael Rizzo, mar@mainstream-engr.com
- Booth #312

