

Future Trends and Thrusts for Army Manportable Power Sources

Michael T. Brundage

US Army RDECOM CERDEC

2007 Joint Service Power Expo

24 - 26 April 2007

AGENDA

- Soldier Power Requirements
- Science & Technology Programs
- Solutions Available Today
- What's Next
 - High Energy Batteries
 - Hybrid Power Sources
 - Fuel Cells
 - Stirling Engine
- Summary

Our Challenge

...Lighten Their Load

Power Requirements

MORE POWER LESS WEIGHT

Land Warrior

System Run Time

Science & Technology Programs

Mounted/Dismounted Soldier Power IV.LG.2006.01

FY06 - FY08

Kilowatts Tactical Power-**Loaistics Fuel**

Hvbrid

Quiet Power Sources

Less weight, lower cost **longer missions**

Less fuel, smaller, quieter power sources

Purpose:

Develop component technologies for power systems for increased mission duration while decreasing logistics burden

Products:

- Soldier
 - <500 Watt Man-portable field battery charger</p> and improved rechargeable batteries
 - Hybrid power source (fuel cell & battery)
 - Li-Air battery and improved photovoltaics

Pavoff:

- Provides savings by reducing number of batteries required for soldiers. Increased power/energy adds mission capability.
- Transitions:
 - Hybrid demonstrators to PM-Soldier in FY06; improved technology for Ground Soldier System in FY08

Science & Technology Programs (cont)

D.CER.2008.08 Power for the Dismounted Soldier

FY08 - FY11

<u>Purpose:</u> To provide the Warfighter with small light weight power sources that maximize specific energy for core Soldiers, integrated Soldier systems and sensors.

Products:

- Prototype Half-size/2X energy primary C4ISR batteries
- Conformal rechargeable Soldier system batteries
- Soldier mission extending hybrid fuel cell system
- Logistic fuel (JP8) powered Soldier portable power source to enable tactical battery recharging

Payoffs:

- Reduction in Soldier weight load
- Extended mission times in Soldier and sensor applications
- Battlefield energy independence; reduced logistics
- Increased Soldier mobility, sustainability, survivability and deployability by providing higher energy sources
- Power sources and charging technologies that meet Soldier-as-a-System requirements

Solutions Available Today

Batteries With State-Of-Charge-Indicators

- Instantly Indicates Remaining Capacity in BA-5590A and BA-5390A
- Adds No Additional Weight to Battery
- BA-5590A/U (Li/SO₂)
 - All Production Converted to SOCI
- BA-5390A/U (Li/MnO₂)
 - In Stock & Available Now

BA-5590A/U

BA-5390A/U

High Energy Rechargeable Li-Ion Batteries

BB-590 Nicad, BB-390 NMH, BB-2590, BB-X590 Batteries and Primary BA-5590 Discharge at 2A

AA 8 - PACK SCAVENGER

Portable Fast Battery Charger for AA-size Cells

8 - PACK SCAVENGER

- Recharges commercial AA cells
- Charges 8 cells in 100 minutes
- Scavenges un-used energy from

Military power sources

Saves 25lbs per Platoon over 5 days

Any 12 VDC source

Charging Sources	# of AA-cells Charged
BA-8180	128
BA-8150	80
BA-8140	64
BA-5590	24
BA-5390	32
BB-390	20
BB-2590	24
SP4-solar panel	8
Vehicle Adapters	8

55 W Solar Charger - Soldier

- Charges two 6.2Ah BB-2590 Li-lon batteries in ~5-6 hrs
- Flexible Panel Design
- Anti-Glint, Inlaid Cammo

Maximum Power	Nominal Voltage	Maximum Current	Weight	Deployed Area	Packed Volume
(Watts)	(Volts)	(Amperes)	(lbs.)	length x width (in.)	length x width x height (in.)
55.0	16	2.8	4.4	55 x 32	11 x 9 x 1.3

Renewable Energy - Lighten Soldier Loads, Reduce Logistics, Lower Costs

AA-Cell Solar Charger - Soldier

- Charges four 2.3Ah AA NiMH batteries in ~4 hrs
- Flexible Panel Design
- Anti-Glint

- 9" x 5" x 2" folded
- 9" x 25", deployed w/shade
- 0.87 lbs without batteries

AA-Cell Holder & Charge Controller

Renewable Energy - Lighten Soldier Loads, Reduce Logistics, Lower Costs

Rucksack Portable Power System - Soldier

- ➤ Solar Panel, Charger, Inverter, and NATO/Commercial Power Adapters.
- >DC/AC power output and Charger for military batteries.
- ➤ In field use for unattended ground sensors (UGS) and surveillance systems.

Soldier Feedback:

"I wanted to thank you again for everything. The camera system [using a REPPS system for 24 hour operation] has been a huge success thus far and I believe has saved lives by keeping our soldiers out of harms way." SPC Fiorino, David G.

Renewable Energy - Lighten Soldier Loads, Reduce Logistics, Lower Costs

What's Next – High Energy Batteries

Extended Run-Time Lithium Carbon Monofluoride (Li/CFx) Batteries

Objective

The development of high energy density Li/CF_x batteries allow for:

- A BA-5590 replacement with twice the run time at equivalent weight and volume
- A half-sized BA-5590 with equivalent run time at half the weight and volume

Technology

Disposable Battery	Chemistry	Weight (lbs)	Energy (Wh)
BA-5590	Li/SO ₂	2.16	200
BA-5390	Li/MnO ₂	2.94	300
BA-XX90	Li/CF _x	2.2	400

Twice the Mission Runtime at same weight versus the BA-5590

Participants

- Sponsor (s): U.S. Army RDECOM CERDEC
- Gov't Contributors: PM JTRS Ground Domain HMS, USAIC
- Industry: Five Known Interested Parties

What's Next - Hybrid Power Sources

Hybrid Power Mission Extender

Case Study: For a 72hr Mission How many batteries/hybrids do we

need to support the Land Warrior System?

Li-145 Lithium Ion (Baseline)

870 Wh

Weight: 13.2 lbs

Volume: 216 in³

Energy: (available)

Gen 4 Zinc-Air/Li-145 Hybrid System

9.4 lbs

218 in³

1145 Wh

UltraCell Fuel Cell Li-145 Hybrid System

6.1 lbs

94 in³

895Wh

What's Next - Hybrid Power Sources

- > Extends Mission Runtimes
- Reduces the Battery Weight and Volume Required for Multiple Day Operation
- Reduces Logistics Costs
 Hybrid Power Sources

Lithium Ion / Zinc-Air Battery/Battery Hybrid for UGS

Lithium –ion Battery / Solar Panel Hybrid for UGS

cycle life)

Sealed Pb-Acid / Zinc-Air Battery/Battery Hybrid for SATCOM Radios

Zinc-Air Battery / Capacitor Hybrid for Javlin

What's Next - Hybrid Power Sources

Battery Hybrid Power Source - Soldier

High Energy Component

High Power Component

Zinc-Air Battery

- Nominal potential: 14 V
- > Nominal rating: 15 Ah
- Weight: 900 g
- > 42- Cell "AA" Design:
- > 14S3P cell configuration

200 Wh/kg

Li-Ion Battery

- Nominal potential: 15.2 V
- Nominal rating: 7.2 Ah
- > Weight: 882 g (1.94 lbs)
- > 16 18650G 2 Ah cells
- ➤ 4S4P cell configuration

Provides 1/3 Weight Reduction Over Rechargeable Alone for 24 Hours

20W DMFC - Soldier

• Dimensions: 9.75" x 2.31" x 3.06"

• System Dry weight: 1.18 kg

• Fuel cartridge: 500 ml / 0.47 kg

24 hr mission weight: 1.6 kg

72 hr mission weight: 2.6 kg

• Efficiency: 22.4%

• Fuel Cartridge Duration: 24 hours

Fuel is 100% methanol at low temp;
 water/methanol mix at high temp >40°C

• 72 hour mission energy density 554 W-hr/kg

Mission Extender Power Source, Battery Charging

25W RMFC - Soldier

CERDEC collaboration with DARPA

Dimensions: 9.3" X 5.38" X 1.8"

System Dry Weight: 1.2 kg

Fuel Cartridge Weight: 0.325 - 0.350 kg

24 hr mission weight: 2.25 kg 72 hr mission weight: 4.23 kg

Efficiency: 23.8% @ 20 watts Fuel Cartridge Duration: 9 hours

72 hr mission energy density: 340 Wh/kg

20 W Solid Oxide Fuel Cell - Portable

CERDEC collaboration with DARPA and SOCOM

Power: 20 W

Start Up Time: 20 minutes

Dimensions: 11.6" X 3.7 " X 5.11"

System Weight: 1.55kg

Fuel Cartridge Weight: 0.406kg (propane/butane)

24 hr mission weight: 1.95 kg @ 20 Watts

72 hr mission weight: 2.77 kg @ 20 Watts

Fuel Cartridge Duration: 25 hours @ 20 Watts

Energy Density: 520 W-hours/kg

(72 hrs@ 20 watts)

20 Watt SOFC

250 W Solid Oxide Fuel Cell - Portable

- Developing a 250 W portable fuel cell system operating on de-sulfured JP-8 fuel.
- Current system uses Propane/Butane fuel.
- Partial Oxidation (POX) reformer design for JP-8.
 Air oxidation, smaller reactor
- <10kg target for 250 W.

What's Next - Stirling Engine - Portable

CERDEC collaboration with DARPA

- Air cooled design
- Propane (FY06)
- JP-8 fuel (FY08)

Projected JP-8 160W _e Performance	Target
Hot-end Temperature	650 °C
Cold-end Temperature	70 °C
Nominal Operating Frequency	102 Hz
Nominal Voltage	28 V _{DC}
Nominal Engine/ Alternator Output Power	160 W _e
Fuel	JP-8
Engine/ Alternator Efficiency	36 %
Generator System Efficiency (without parasitics)	24 %
Net System Efficiency	20 %
System Weight	<10kgs

160W_e System (Dual Opposed 80W_e Engines)

Platoon Level Portable Power Source, Battery Charging – JP-8 Target Fuel

Summary

- Power Source Technologies continue to improve.
- Power Sources will always be seen as a weight/volume/logistic burden unless taken in as part of the equipment system level designs, which must include power management.
- Power Management of the Systems to a Fixed Power Budget will reduce the weight, volume, and logistic costs for power and energy.

