Solid Oxide Fuel Cell Power Systems for Small UAVs

2007 Joint Service Power Expo April 24-26 2007

Timothy LaBreche

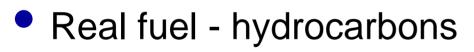
Adaptive Materials, Inc.

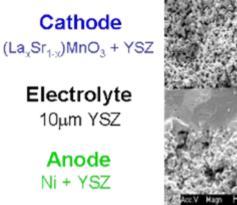
4403 Concourse Drive, Suite C Ann Arbor, MI 48108 734.302.7632

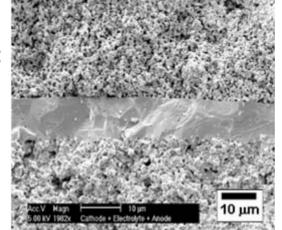
www.adaptivematerials.com

- About Adaptive Materials (AMI)
- AMI Technology & Systems
- Unmanned Aerial Vehicles Power Systems

- Ann Arbor, Michigan
- Portable Solid Oxide Fuel Cells
- 25W, 50W and 150W Systems

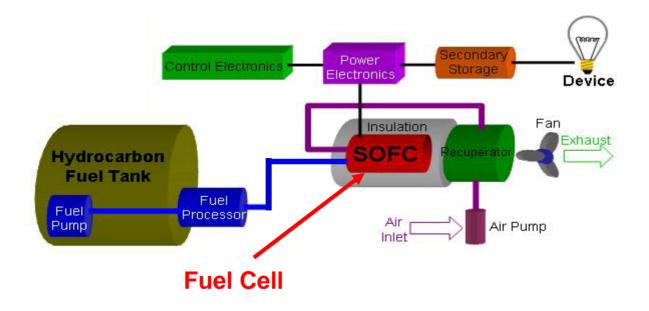





Technology

- Technology originated with large scale power generation
- Low cost ceramic materials

Micro-tubular Fuel Cells



Technology

- Cells coupled into Stack
- Balance of Plant

Technology

Pilot scale manufacturing facility

- Capacity 100,000 cells per year
- Six Sigma based process improvement

SOFC = Fuel Flexibility

Propane Fuel Tank 9,675 Whr/kg

Global Commodity

Maximum Portable Performance

Highest energy density of any packaged fuel

100% Consumer Confidence

- DOT and UN certified tanks
 - Ground and air shipping
- Global commodity
 - Existing supply chain and distribution
- Low Cost
- You can step outside this room and find fuel for the UAV power system within an hour.

e50

• 50 Watt Continuous Power

- 12V
- 100 Watt peak power

System Specifications

- Dry system weight, less than 2.25 kg
- Temperature -20°C to 50°C
- Relative Humidity 5% to 95%
- 12,500 feet with 0% power degradation
- Dust and rain to military specification
- Rapid Start Up < 15 minutes
- Exhaust temperature <55°C
- Multiple fuel compatible

e50

Specifications		
Dry Weight	2.25kg	
Volume	4.5	
Net System Efficiency	17%	

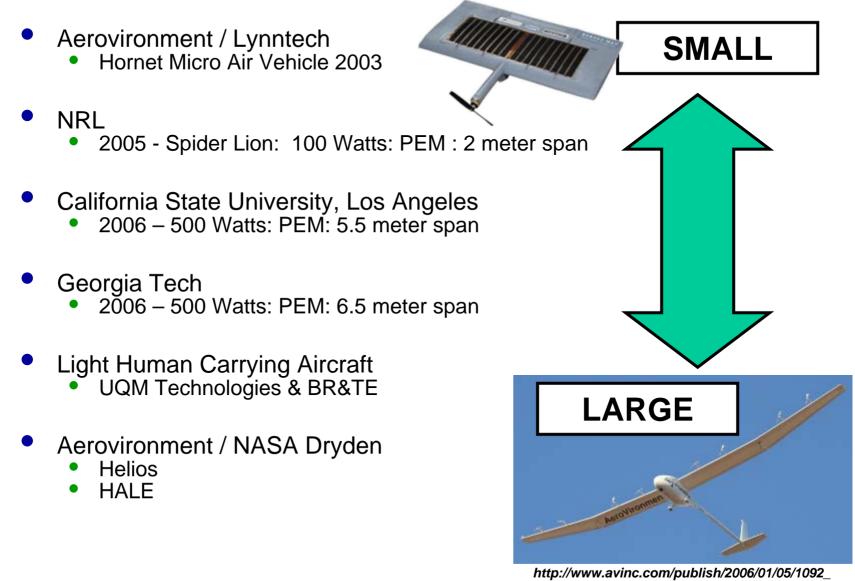
Specific Energy	
3 Day Mission W-hr/kg	775
10 Day Mission W-hr/kg	1200

End of Life Testing

Goal = 300 Hours Tested MTBF = 500 Hours

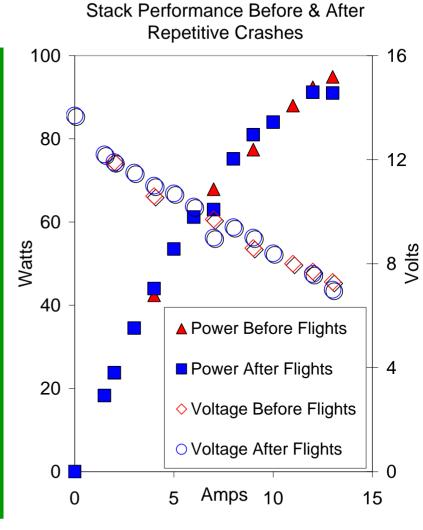
Rapid Start - Stop Testing

Goal = 100 cycles Avg Cycles = 144 cycles



- Quieter than internal combustion engines
- Far more efficient than small fractional horsepower engines
- More range and endurance than batteries
 - Much higher Whr/Kg
- Electric power for payload

Hydrogen Fuel Cell Aircraft In All Sizes



GO Aerial View2.jpg

SOFC UAV Power Systems are Robust

Early Test Flights - Video

Ceramic Not Always = Fragile

Gen One SOFC Powered UAVs

4 hour 19 minute Flight

June 2006

UAV Specifications	
Gross UAV Take Off Weight	1.94 kg
SOFC System Dry Weight	0.9 kg
SOFC System Wet Weight	1.06 kg
Cruise Power	~60 Watts
SOFC Dry Specific Power	72 W/kg
Flight Specific Energy	250 Whr/kg

 More than 4 hours aloft using a 60 Watt Solid Oxide Fuel Cell system weighing less than 1 kilogram.

Flight and Ground Test Results

Date	Event	Duration (Hrs)	Energy Density (W-hr/kg)
Feb 2005	Flight	0.25	-
Oct 2005	Flight	0.17	-
Jun 2006	Flight	1	60
Jun 2006	Flight	2.3	138
Jun 2006	Flight	4.3	250
Nov 2006	Autonomous Ground Test	11.5	680
Nov 2006	Autonomous Ground Test	8	443
Nov 2006	Autonomous Ground Test	8	440
Nov 2006	Autonomous Ground Test	8	414

Program Highlights

- Flight tests and bench top endurance runs to prove feasibility of SOFC UAV
- 4:19 flight represents a "world record" in fuel cell powered UAVs

Acknowledgements

- Department of Defense and other agencies
- The AMI team