2007 Joint Service Power Expo

April 24-26, 2007

Large-sized Li-ion Battery Module for Hybrid Powered Energy System

Takefumi Inoue, Koichi Nishiyama* and William A. Moll**

* GS Yuasa Corporation **United Lithium Systems

Background of Development

 Increasing demand of large-scale lithium ion batteries for high power industrial applications such as hybrid powered energy systems

Development of new, large-scale lithium ion cell and battery modules which have high power, long life and superior cooling performance

Cell Specifications, Technologies and Performance

Battery Module Specifications and Cooling Evaluation

Evaluation of Energy Efficiency for Hybrid Powered Energy System (Railway Vehicle Systems)

LIM30H Cell Specification

Mass / kg	2.0
Dimension / mm	47W, 170L, 133H
/ in	1.85" x 6.7" x 5.2"
Nominal voltage / V	3.6
Nominal capacity / Ah	30

Key Technologies of LIM30H

 Positive active material: LiMn₂0₄ improved for safety and long life

 Negative active material: Hard carbon for improved high rate charge/discharge performance and high energy efficiency

Structure:

Robust current collecting construction for high amperage charge/discharge

Cycle Life Performance of Improved Manganese Active Material

Quick Charge Performance of the Cells with Various Negative Active Materials

SYSTEMS

Charge : 10CA to 4.15 V at 25°C

Structure of LIM30H

Quick Charge Performance of LIM30H

Charge : ()30 , ()150, and ()300 A to 4.15 V followed by constant voltage of its value for 3 hours at 25 °C

Discharge Performance of LIM30H

SYSTEMS

GSYUASA

Discharge Capacities of LIM30H at Various Ambient Temperature

Charge : 30 A to 4.15 V followed by constant voltage for 3 hours at 25°C Discharge : 30 A to 2.75 V at various ambient temperature

SYSTEMS

Life Performance of LIM30H under Large Current Charge Discharge Pulse Cycle

300A pattern cycle:

Charge- 300A 30sec. Discharge- 300A 30sec. Rest- 480sec.

Cell Specifications, Technologies and Performance

Battery Module Specifications and Cooling Evaluation

Evaluation of Energy Efficiency for Hybrid Powered Energy System (Railway Vehicle Systems)

LIM30H-8R Module Specifications

Items	Specifications
Cell	LIM30H (8 cells in series)
Nominal capacity	30 Ah
Nominal voltage	28.8 V (3.6 V / cell)
Operating voltage	20.0 - 33.6 V (2.5 - 4.2 V / cell)
Dimensions	W231 – D375 – H147 / mm
Mass	18.5 kg
Cooling	Designed for forced air cooling
Cell management	Cell Scanner(CS) installed

LIM30H-8R

Positive Terminal

Battery Monitoring System of LIM30H-8R

Cooling Air Flow of LIM30H-8R

Battery powered tram (Railway Technical Research Institute, Japan)-

Cell

55Ah-class proto type

(92W, 170L, 133H)

Battery system 168 cell-series

LIM30-8 Environmental Test

Vibration test

≻ UN3090

> JIS E 4031 2B (JIS : <u>Japanese Industrial Standard</u>)

GSYUASA

Temperature Rise of LIM30H-8R with Large Current (120A) Operation with Various Air Flow

Cell Specifications, Technologies and Performance

Battery Module Specifications and Cooling Evaluation

Evaluation of Energy Efficiency for Hybrid Powered Energy System (Railway Vehicle Systems)

Example of Hybrid Powered Energy System (Hybrid Railway Vehicle Power System)

Evaluation of Energy Efficiency for Hybrid Railway Vehicle Power System

Test Battery: LIM30H-8R-22series (30Ah-634V)

Charge discharge conditions:

- 1. Discharge (Acceleration assist): 90kW for 60 sec.
- 2. Rest (Constant speed running): 180 sec.
- 3. Charge (Regeneration at Decelerating): 200kW for 30 sec.
- 4. Rest (Stop at the station): 30 sec.

Result of Energy Efficiency Test for Hybrid Railway Vehicle Power System

Conclusions

Newly developed Large-sized Li-ion Battery Module(LIM30H-8R) for Hybrid Powered Energy System has the following features:

High rate charge and discharge capability

- Longer life performance under large current charge discharge pulse cycles
- CS (cell scanner) is included in each battery module, Battery Monitor communicates to vehicle
- Thermal management for large current continuous operation
- Higher energy efficiency suitable for hybrid energy system

United Lithium Systems/GS Yuasa William Moll (678) 739-2140 bill.moll@unitedlithium.com www.unitedlithium.com

SALES Contact:
 Jeff Cason (678) 739-2139
 jeff.cason@unitedlithium.com

