

Agent Fate Study Update

Presented at

The 2007 Joint Service Chemical and Biological Decontamination Conference

24 October 2007

Dr. James Savage JSTO-CBT-TAS Thrust Area Manager for Agent Fate 410-436-2429, james.savage@us.army.mil

What is the Objective of the Agent Fate Program?

Improve model predictions of agent persistence

Objectives:

- Measure and understand the agent/substrate interactions
- Develop predictive algorithm module

Payoffs:

- Support all capability areas: detection, protection, decontamination
- Augments operational and mission area analysis tools Joint Effects Model (JEM) Joint Operational Effects Federation (JOEF)
- Direct feed to Low Level Toxicology DTO (CB.51)

Providing Relevant Products To The Warfighter

Improved HD Contact Hazard Persistence Estimates

Table 1-4. Chemical agent persistency in hours on chemical agent resistant coated painted surfaces.

Temper	ature	Agents						
C°	F°	GA/GF ¹	GB2, 3	GD2, 3	HD1	VX 2, 3		
-30	-22	,	110.34	436.69				
-20	-4	•	45.26	145.63	••	••		
-10	14	•	20.09	54.11	••	•••		
0	32	*	9.44	22.07	••			
10	50	1.42	4.70	9.78	12	1776		
20	68	0.71	2.45	4.64	6.33	634		
30	86	0.33	1.35	2.36	2.8	241		
40	104	0.25	0.76	1.25	2	10:		
50	122	0.25	0.44	0.70	1	44		
55	131	0.25	0.34	0.51	1	25		

2 For grassy terrain, multiply the number in the chart by 1.75.

For sandy terrain, multiply the number in the chart by 4.5.

* Agent persistency time is more than 1.42. FM 3-4

** Agent is in a frozen state and will not evaporate or decay. ** Agent persistency time exceeds 2,000 hours.

(Preliminary - HD on Sand) **Based on Agent Fate DTO Data**

Temp	2-m Height Windspeed (m/s)					
(°C)	0.5	3.0	6.0			
15	>17	>17	>17			
35	6	4	4			
50	3	2	<1			

Surface	GA Tabun	GB Sarin	CD Som an	GF Cyclosarin	HD Distilled Mustard	R-33 (Russian VX Isomer	XA
Concrete	0	0	0-0.5	0*	0	0-*	0-0.1
Asphalt	0	0	0*	0*	0±	0*	0-0.9
Grass	0	0	0*	0*	0-0.2	0*	0-33
Sand	0	0	0*	0*	0*	0*	0-0.5
Sandy Loam	0	0	0*	0*	0*	0*	0-1
Bare Ground	0	0	0*	0±	0-0.1	0*	0-1
Tar and Chip	0	0	0*	0*	0*	0*	0*
AC Topcoat	0	0	0*	0*	0-0.3	0*	0-14
CARC Paint	0	0	0*	0*	0	0*	0*
Alkyd	0	0	0*	0*	0	0*	0-1
Polyurethane	0	0	0*	0*	0	0*	0*
Glass	0	0	0-3	0*		0*	0*
Bare Metal	0	0	0-3	0*	0-0.8	0*	0*
Wood	0	0	0*	0*		0*	0-1
Snow	0	0	0*	0*	0*	0*	0
lce	0	0	0*	0*	0*	0*	0*

(HD on Impermeable Surface) **Based on Agent Fate DTO Data**

	Temp	2-m Heig	ht Windspe	eed (m/s)	
1000	(°C)	0.5	3.0	6.0	
	15	24	7	6	
1000	35	4	1	1	
1200	50	1	0.5	0.5	3

Environmental Fate of Chemical Agents

Purpose & Goal – To enhance predictive tools with high-fidelity data, quantifying the fate of chemical agents within operationally significant climates and surfaces.

Wind Tunnel Testing

- Measures evaporation of agent from surface at realistic climactic conditions. Main data input stream for predictive models
- Uses combinations of vapor sampling & gravimetric analysis

Agent/Substrate Interactions

Agent/Substrate interactions are critical component to determinations of fate.

Studies use highest fidelity methods including NMR, SPME, vapor resurgence, extractions quantitative imaging and fundamental property measurements

Outdoor Testing

Validates model developed with wind tunnels data

Provides "ground truth" of behavior in environment

Modeling

Improves hazard prediction tool accuracy

Transitions information to warfighter in a usable format

4

International Partners: CZ, POL, NLD, UK, and SGP

Design of Experiments Minimizes the Number of Experiments

- About 10,000 experiments for full factorial approach infeasible!
- Now, about 1500 experiments with CCD approach
 - 24 agent/substrate combinations
 - 3 levels for each parameter (temp., drop size, wind speed, humidity)
- Created central composite design (CCD) experimental test matrix
- Developed surface evaporation assessment tool
- Incorporated 26,115 new data elements into evaporation database

HD on Concrete CCD Experiments

Imaging Systems Display Agent / Substrate Interactions

Imaging techniques quantify agent penetration into porous media

Asphalt – 4 days

HD on Concrete

HD on Concrete

- Substantially greater GD Displacement-Peaks from Clay than Sand
- Substantially greater Total amount of GD displaced (~30x) from Clay than Sand
- Clay soil material retained displaceable-GD appreciably longer than Sand

NMR Results: Degradation of HD

- Limestone:
- Asphalt:
- Sand:
- Mortars:
- Concrete:

No reaction in 19 months No reaction in 13 months No reaction in 12 months Half-lives of weeks to years. Half-lives of weeks to years.

The initial degradation products on concrete were toxic sulfonium ions. These degraded to non-toxic products over a period of months to years.

Decomposition was faster on wet substrates

Interaction of VX with the Components of Concrete

Purpose:

To Determine which of the Components of Concrete is Primarily Responsible for the Hydrolytic Decomposition of VX

Conclusions:

- The active component is the Mortar, Portland Cement
- The active chemical component is Calcium Oxide
- Calcium Carbonate is ineffective in decomposing VX
- Surface Calcium Oxide is converted to Calcium Carbonate during aging

Summary:

- The experiments identify the important concrete ingredient in the decomposition of VX to be the Calcium Oxide in the Portland Cement
- Concrete is an example of a porous, reactive substrate of interest
- Further experiments continue to aid in our understanding of secondary vaporization

	New	Old
рН	12	8
VX	reacts faster	reacts slower
Mustard	reacts faster	reacts slower
Mustard	forms vinyl	no vinyl
Ca Species	oxide	carbonate

VX on Concrete Monoliths

- Initial reaction in the first monolayer of VX, followed by a slower, secondary reaction
- If the VX is diluted in hexane it reacts faster
- Smaller droplets react faster
- VX degrades faster on more basic (newer) concrete

TGA Evaporation Experiments

Range of Wind Tunnel Sizes Used in Agent Fate

65-cm Multiple Droplets

10-cm Multiple Droplets

5-cm Single/Multiple Droplet

5-cm design enables multiplexing of tunnels in chemical fume hoods

12

5 x 5-cm Wind Tunnel Operational Arrangement

Variable Tube Sampler (VTS) x2

HYFED

Control System Computer

Agent/Substrate Sample

ECBC Lab Wind Tunnel Results

Comparison of Mustard on Different Substrates

Concentration vs Time

GD on Stainless Steel

Preliminary Persistence Estimates HD on Concrete / Sand Vapor Hazard

Preliminary comparisons of evaporation from operationally relevant substrates

Comparison of HD Evaporation Model Predictions To Experimental Data

Agent Fate Product

Agent Fate Database

Version : 2 : 2 : 1

- Data pages
- Data Matrix Reporting
- Open List query based chart builder
- Open Excel List builder
- Open List based results query builder
- Open Navigable results query builder
- Open Table based results query builder
- Import Data Sheets

GENERAL DYNAMICS

Release : 6/20/2007

As of Sept 2007

- 364 datasheets
- Agents
 - HD, GD, VX
- Substrates
 - Asphalt
 - Concrete
 - Glass
 - UK Sand
 - Stainless Steel

VX Contact Hazard Estimates

Ungloved, 2-Hand Touch Percutaneous Liquid Contact Hazard (Severe ED₅₀ Effects)

Based on VX data on an Impermeable Surface from Agent Fate DTO

Surface Temperature (°C)	Full Transfer	Partial Transfer*		
35	2770	1520		
42	1470	740		
50	990	570		

Time (min)

* Partial Transfer = 50% transfer from surface to hand, 25% transfer through skin

1 g/m² deposition 90% agent purity (900 mg/m² agent deposition) Mono-dispersed 6-uL drops (~ 2.3mm spherical drop diameter)

From Data to Operational Utility

Summary

- Environmental Fate of Chemical Agents DTO CB.42 successfully completed in 2006 ECBC-TR-532
- CWA evaporation and reaction kinetics data delivered to modelers to improve hazard prediction estimates
 - Updated AFMAN 10-2602; TTP's; VLSTRACK; CHEMRAT
- Data being processed to deliver secondary evaporation model to JEM 3rd quarter FY08 under TTA IS12
- Future work: Thickened Agents on operational substrates

What is the source term?

- The source term is defined as follows:
 - (a) amount of agent deposited on the surface
 - (b) amount of agent evaporated
 - - (c) amount of agent that 'irreversibly' binds to substrate
 - (d) amount of agent that reacts with the substrate
 - + (e) amount of agent that diffuses back to the surface

Need to Determine Scope of Agent/ Substrate Interactions

Agent Fate Database

Time (min)

23

4000

Agent Fate Database

m1	577			
Tunnel:				
Date:	October 16, 2006			
Experiment Number:	86. 10 2101000			
Flie Ivame:	20061016_3k_038			
Substra	te			
type of substrate :	Glass			
substrate sample size (mm):	36.6	0.00105	m² 👘	
Agent	t			
test agent:	VX_CASARM			
agent grade::	CASARM			
agent purity:	91.0%	Date/Chem:	KS	12/21/2006
actual density:	1.01	mg/uL		
Contamin	ation			
number of drops:	1			
nominal drop volume:	6	μL		
actual calculated drop volume:	6.000	μĽ		
weight of clean substrate:	0.000	mg		
weight of contaminated substrate:	0.000	mg		
mass of agent disseminated:	6.060	mg		
corrected mass on 100% agent purity:	5.515	mg		
actual contamination density:	5.76	g/m ²		
actual contamination density based on 100% agent purity.	5.24	g/m²	i i	
Control Para	meters			
Miller Nelson temperature:	0.0	°C	0.0	
air flow temperature:	41.7	°C	0.3	
A alborg Flowmeter air flow rate:	181.64	SLPM	1.1	
transition section wall temperature:	41.9	°C	0.4	
fetch section wall temperature:	42.3	°C	0.6	
substrate temperature:	42.0	°C	0.4	
piston zone temperature:	42.7	°C	0.5	
post-test section wall temperature:	45.1	°C	0.3	
mixing box wall temperature:	50.1	°C	0.4	
sampling duct wall temperature:	50.0	°C	0.1	
test section air flow speed:	1.64	m/s	0.0	
air flow relative humidity:	0.00	%	0.0	
Sampling Par	ameters			
sampling technique:	VTS#06			
introduction technique:	UNITY/ULTRA			
analysis technique:	GCMSD		1	

Summary Dat	a Sheet -	Wind Tur	mel Exper	iment					
Test Facility: Date of Experiment (mm/dd/yy): Wind Tunnel Descriptor: Oviginal Data File Name:				20041	016 31- 0	39/0 0 0 -	ECBC 10/16/06 3K		
Original Data File Name:		l ü	1	20001	010_JK_0	30(0 0 0 3	2)11 0		
ubstrate Glass				Evaporation Data					
substrate code:		<u>G001</u>		Data	*Elapsed	GC Tube	Vapor		
Agent	ļ	VX		Point	Time	Conc.	Collected		
agent type (neat/thickened):		CASABM		#	min	mg/m3	mg		
agent purity - weight 1%:		991.00%		0	0.00	0.0000	0.000		
'density of pure agent - mg/µL:		1.01		10	5.82	0.0075	0.0040		
nominal density of test agent - mg/µL:		nd		2	75.87	0.0184	0.1683		
targeted drop volume - μL:		6.00		3	145.92	0.0166	0.3914		
actual drop volume - µL:		nd		4	215.97	0.0134	0.5824		
targeted drop mass - mg:		6.060		5	346.02	0.0151	0.9196		
actual drop mass - mg:		nd		6	476.07	0.0154	1.2797		
number of drops disseminated:		1		7	606.10	0.0149	1.6370		
total mass disseminated - mg:		6.060		8	736.15	0.0122	1.9567		
total mass of agent disseminated (corrected for purity) - mg	ji k	5.515		9	866.20	0.0118	2.2399		
Experimental Variables	Targeted	Actual (Ava	z/StdDev)	10	996.25	0.0117	2.5175		
air flow temperature - 'C:	35	41.7	0.323	11	1126.30	0.0052	2.7172		
substrate temperature - 'C:	35	42.0	0.354	12	1256.35	0.0081	2.8748		
air flow relative humidity - %:	0	0.00	0.000	13	1326.40	0.0066	2.9686		
air flow speed above drop - m/s:	1.77	1,64	0.013	14	1396.45	0.0060	3.0484		
air flow speed measurement height - cm:	Ť			15	1466.50	0.0043	3.1136		
enter theoretical air flow speed at 2 m height - m/s:	3.250	3.033		16	1536.55	0.0050	3.1726		
Evaporation Measurement Technique	Va	por Collectio	on	17	1606.60	0.0017	3.215		
reference code for experimental method:	E	BC X-SOP V.0	6	18	1676.65	0.0006	3,2296		
Vapor Collection Data			10-17 12	19	1746.70	0.0000	3,2332		
total mass of agent vapor collected - mg:		3.233		20	1816.75	0.0000	3.2332		
Gravimetric Data (not provided by ECBC)				21	1886.80	0.0000	3.2332		
initial weight of uncontaminated test substrates g		nd		22	1956.85	0.0000	3.2332		
weight of contaminated test substrate - g:		rid		23	2091,90	0.0000	3.2332		
initial mass of agent deposited on test substrate i mo		лd		24	2231.95	0.0000	3,2332		
				25	2428.67	0.0000	3.2332		
initial weight of uncontaininated test substrate - o		nd		26	2635.38	0.0000	3,233		
weight of test substrate after evaporation - g		rid		27	2842.10	0.0000	3.233		
résidual mass of agent in test substrate after evaporation -	(F)(C):	0.000		28	3142.15	0.0000	3,2332		
	and the second	and the second se	and the second			1 C C C C C C C C C C C C C C C C C C C			