

# Nano-Engineered Additives for Active Coatings



### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

<u>A.M. Rawlett;</u> J.A. Orlicki; J.J. LaScala; P.M. Smith; N.E. Zander; W.E. Kosik; J.D. Demaree; K. Andrews

U.S. Army Research Laboratory Aberdeen Proving Ground, MD 21005 arawlett@arl.army.mil

**Content approved for public release (JUN 2007)** 

Joint Chemical Biological Decontamination & Protection Conference 2007 Virginia Beach, VA 24 OCT 2007





# **Underlying Concepts**



## **Model Systems**



## Implementation

Approved for Public Release (JUN 2007)

**RDECOM** Changing threats dictate new approaches to asset protection





### Reduce Asset Susceptibility to Non-Conventional Attacks



C. albicans



VS.

Staph



E. coli TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Approved for Public Release (JUN 2007)

# **Critical performance characteristics**



- Topcoats are complex multirole formulated systems
  - Camouflage

- Corrosion protection
- Low sorption
- Materials limitations
- Cost effective
- Approaches for surface modification
  - Plasma treatment
  - Self-assembly
  - Additive incorporation



### **Self-Directing Materials**







### Asymmetric response desired to maximize additive impact

# Self-segregating materials address several issues

- Decreased additive requirement
- Minimizes mass transport issues
- Minimizes diffusion limitations
- Minimal impact on base coating

RDECOM Hyperbranched polymers provide readily available scaffolds for the preparation of polymer additives





## **Desired characteristics**

- Low chain entanglements
- High solubility
- Large number of reactive sites



| Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Polymer                       | 90'   | 90° TOA- Atomic Comp. |      | 30° TOA- Atomic Comp. |       |       | np.  |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-----------------------|------|-----------------------|-------|-------|------|-------|
| 10 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | С     | F                     | Мо   | 0                     | С     | F     | Мо   | 0     |
| ( A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | POM +<br>TPU                  | 79.32 | -                     |      | 18.09                 | 82.75 | -     | -    | 15.62 |
| Store of the second sec | TPU +<br>HBP 6-H <sup>⁺</sup> | 64.28 | 13.52                 | -    | 9.59                  | 68.23 | 12.90 | -    | 7.84  |
| H <sub>5</sub> PV <sub>2</sub> Mo <sub>10</sub> O <sub>40</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                             | 61.61 | 10.31                 | 2.90 | 24.02                 | 60.54 | 17.48 | 2.34 | 18.33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II                            | 61.65 | 14.51                 | 2.31 | 19.11                 | 60.25 | 22.18 | 1.99 | 13.30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш                             | 62.11 | 16.56                 | 1.73 | 16.26                 | 60.14 | 23.56 | 1.54 | 11.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV                            | 63.33 | 11.39                 | 2.30 | 21.70                 | 62.30 | 17.45 | 2.14 | 16.79 |
| Soluble complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                             | 63.80 | 12.03                 | 2.65 | 18.71                 | 63.59 | 17.80 | 2.21 | 13.55 |
| when protonated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VI                            | 63.61 | 13.49                 | 2.10 | 19.09                 | 58.66 | 24.10 | 1.94 | 13.68 |



RDECON

HBP-POM complex demonstrates migration, ~ 10 fold increase in surface concentration

Approved for Public Release (JUN 2007)







RBS results correlate with XPS results, show ~11 fold increase in surface concentration of metal catalyst sites







### **Alternate Surface Materials**

• Silver is good candidate

- Forms bonds readily; S-Ag or N-Ag good covalent, ligand interactions
- Known antimicrobial activity
- Available as nanoparticle (NP), ion, or inorganic-supported particles
- Heavy element allows use of XPS or RBS









**RDECOM**) Sharp band of Ag enrichment indicates efficient surface migration







- Limited Oleylamine transport
- PEI-HBP-AgNP yields thick
- layer, tapering conc. profile; ca. 2% Ag by RBS
- PE-HBP-AgNP yields sharp layer, ~ 2nm in depth, large depletion zone, RBS indicates ca 10% Ag in thin slice
- Ag layer thinner than resolution of instrument

#### Approved for Public Release (JUN 2007)

RDECOM

Ag uptake at surface scales with strength of Ag-X bond formed, delivery by Ag-protein complex







- Rinsing removes 99+% of Ag
- Ag-protein complex delivery
- Note intensity of RBS signal correlates to bond strength: Ag-S >Ag-N > physisorption
- Trend reverses in hexane delivery solvent

Approved for Public Release (JUN 2007)





- AgNP are a nice model system, but cost and long-term stability remain question marks
- Commercial options for antimicrobials and chemical decon groups are low probability solutions
  - Silver zeolites- leaching, sorption
  - Small molecule biocides- leaching, porosity
  - $M_xO_v$  nanoparticles for chemical decon (AI, Mg, Zn, Cu)– deactivation
  - TiO<sub>2</sub> particles- long term coating stability, light driven
- ARL developing library of mixed end-group additives with specific functionality
  - Quaternary ammonium salts (in conjunction with TSI, Inc.)
  - Biguanides (in conjunction with TSI, Inc.)
  - Alkanolamines
  - N-halamines, hydantoins







RDECOM Antimicrobial activity in TPU was assayed using an array of techniques to show efficacy



 ASTM E2180 test for hydrophobic surfaces challenged with *E. coli*, *S. aureus*, *C. albicans*, *P. aeruginosa* AATCC Method 100, adapted for hydrophobic surfaces challenged with *S. aureus*, *K. pneumoniae* Kirby-Bauer test for leaching of additives challenged with *E. coli* and *S. aureus*

| НВР   | % Reduction C.<br>albicans | % Reduction <i>E</i> .<br><i>coli</i> | % Reduction<br>MRSA | % Reduction S.<br>aureus |
|-------|----------------------------|---------------------------------------|---------------------|--------------------------|
| PEI/Q | 99,9999                    | 99.99                                 | 52.51               | 99.9999                  |
| PE/ Q |                            | 99.54                                 |                     | 86.05                    |
| PEI/B | 65.99                      | 99.93                                 | 99.9999 (2 wt%)     | 99,9999                  |
| PE    |                            | 94.10                                 |                     | 60.63                    |
| PEI   |                            | 21.80                                 |                     | No reduction             |

 Increased efficacy at elevated additive levels

 Reasonable activity in TPU proxy system

• ASTM E2180 test w/ 1% additive in TPU, 24 h exposure



lease (JUN 2007)

**RDECOM** Transitioning technology to coating systems presents new technical barriers, performance characteristics, requirements



Additive reacts during cure, potential for anchoring additive at surface, may also influence cure kinetics and migration efficiency Surface characteristics of coatings are of paramount importance



RDECOM

XPS provides most direct method to ascertain surface composition of additive, monitoring fluorine





# Bulk concentration of fluorine ~0.3 %, observed ca. 7% at surface of coating

Approved for Public Release (JUN 2007)

**RDECON** Candidate HBP scaffolds evaluated in a range of coating systems demonstrate migration, ca. 20 – 30 fold increase



|                      | Coating      | HBP            | F 1s | N 1s |
|----------------------|--------------|----------------|------|------|
| Solvent-             | Polyurea     | None           | 0.0  | 5.22 |
| based primer $\prec$ | Polyurea     | PEI-F-Alk      | 2.01 | 7.36 |
| Water-based          | Ероху        | None           | 0.0  | 3.15 |
| primer               | Ероху        | PE-F-Alk       | 7.18 | 3.16 |
| Ć                    | Polyurethane | None           | 0.0  | 4.62 |
|                      | Polyurethane | PE-F-Alk       | 9.62 | 5.80 |
| Water-based 🚽        | Polyurethane | PEI-Alk        | 0.0  | 5.64 |
| topcoat              | Polyurethane | PEI-F-Alk      | 0.62 | 5.14 |
|                      | Polyurethane | PEI-F-Alk-Quat | 0.32 | 5.58 |

- Most HBP segregated to surface of coatings using PEI and PE-based additives:
  - Coating/PE bulk Fluoro conc. = 0.3 mol%
  - Coating/PEI bulk Fluoro conc. ~ 0.07 mol%





| Test                                            | Polyure-<br>thane | PUrth +<br>PEI-F  | PUrth +<br>PEI-aliph. | PUrth +<br>PE-F   | PUrth +<br>PEI-Quat. |
|-------------------------------------------------|-------------------|-------------------|-----------------------|-------------------|----------------------|
| Color                                           | Pass              | Pass              | Pass                  | Pass              | Pass                 |
| Gloss                                           | 1.3/1.1           | 1.2/1.1           | 1.2/0.8               | 1.2/1.0           | 1.3/1.1              |
| DFT                                             | 3.1-3.6           | 3.1-3.7           | 2.1-2.9               | 2.5-2.7           | 2.7-3.7              |
| MEK Dbl Rub                                     | 200+              | 200+              | 200+                  | 200+              | 200+                 |
| Impact<br>Resistance, Ib-<br>in, direct/reverse | 40/20             | 40/20             | 40/20                 | 40/20             | 40/20                |
| Cross-cut<br>adhesion<br>WET/DRY                | 5B/5B             | 5B/5B             | 5B/5B                 | 5B/5B             | 5B/5B                |
| QUV (cyclic test)<br>600 h                      | Pass/no<br>change | Pass/no<br>change | Pass/no<br>change     | Pass/no<br>change | Pass/no<br>change    |
| STB                                             | Pass              | Pass              | Pass                  | Pass              | Pass                 |
| Flexibility/DFT                                 | Pass              | Pass              | Pass                  | Pass              | Pass                 |
| Water<br>Resistance                             | Pass              | Pass              | Pass                  | Pass              | Pass                 |

# Integration into CARC coatings





Control

Approved for Public Release (JUN 2007)



HBPs incorporated into reactive coatings exhibit variable activity, improved at 2% loading



| CARC                | HBP &<br>Additive | % Reduct.<br>C. albicans | % Reduct.<br>E. Coli | % Reduct.<br>S. aureus | % Reduct.<br>MRSA |
|---------------------|-------------------|--------------------------|----------------------|------------------------|-------------------|
| Epoxy<br>(primer)   | PEI C10<br>C4 Q   | X                        | 18.54<br>(99.99)*    | 5.41<br>(100)*         | X                 |
| Polyurea<br>1 wt%   | PE C10<br>C4 Q    | 99.68                    | 98.02<br>(99.54)*    | 100<br>(86.05)*        | X                 |
| Polyurea<br>2 wt%   | PEI C10<br>C4 Q   | Х                        | 100                  | 100                    | 100               |
| Polyurethane        | PEI C10<br>C4 Q   | X                        | 18.29<br>(99.99)*    | 25.44<br>(100)*        | X                 |
| Polyurethane        | PE C10<br>C4 Q    | X                        | NR<br>(99.54)*       | 5.92<br>(86.05)*       | X                 |
| Polyurethane        | PEI B             | 94.26<br>(65.99)*        | 25.65<br>(99.93)*    | 43.66<br>(100)*        | X                 |
| Int. Epoxy<br>2 wt% | PEI C10<br>C4 Q   | X                        | 90.26                | 100                    | X                 |

• Q denotes quaternary ammonium salt (values in (x) from TPU system)

- B denotes biguanide group
- Reduced efficacy relative to TPU system overcome by loading increase



Approved for Public Release (JUN 2007)

|                                                  | Composition - Atomic % |        |       |       |  |
|--------------------------------------------------|------------------------|--------|-------|-------|--|
| Sample                                           | С                      | 0      | Ν     | F     |  |
| COTS Polyurethane Baseline 2-22-06               | 41.269                 | 23.658 | 0.166 | ND    |  |
| COTS Polyurethane Baseline 4-13-06               | 74.52                  | 21.32  | 3.98  | 0.19  |  |
| COTS Polyurethane PEIquat <sup>*</sup>           | 68.541                 | 16.448 | 3.920 | ND    |  |
| COTS Polyurethane PEquat                         | 69.60                  | 25.84  | 4.52  | 0.05  |  |
| COTS Oil/Alkyd Baseline 4-13-06                  | 81.570                 | 17.410 | 0.870 | 0.15  |  |
| COTS Oil/Alkyd PEquat                            | 81.35                  | 17.12  | 1.25  | 0.28  |  |
| COTS Acrylic Latex Baseline 2-15-06 <sup>*</sup> | 74.687                 | 23.043 | 0.888 | ND    |  |
| COTS Acrylic Latex Baseline 4-21-06              | 73.8                   | 24.84  | 1.09  | 0.27  |  |
| COTS Acrylic Latex PEIquat <sup>*</sup>          | 73.764                 | 18.859 | 2.949 | 2.628 |  |
| COTS Acrylic Latex PEquat                        | 77.18                  | 20.84  | 1.54  | 0.44  |  |

•COTS – Commercial off-the-Shelf.

- •Good segregation of HBP only in acrylic latex
- •HBP caused instant gelation regular latex

Licensing our patented technology to numerous paint and coating companies

## **RDECOM** E-Spinning permits significant surface migration.





E-spinning performed by collaborators at Virginia Tech.

≻E-spinning accomplished using 120K, 350K PMMA

Fiber sizes unpertrubed by additive inclusion

Initial experiment demonstrating Ag uptake met with some success (3 min exposure)

| <u>XPS RESULTS</u>         | С     | N     | Ο     | F     | Ag   |
|----------------------------|-------|-------|-------|-------|------|
| 350 K PMMA                 | 79.84 | 0     | 20.16 | 0     | 0    |
| 350K PMMA, 1% add.         | 71.38 | 5.67  | 15.5  | 7.45  | 0    |
| 350K PMMA, 3% add.         | 53.35 | 15.56 | 14.24 | 16.85 | 0    |
| 350K PMMA, Ag dip          | 77.42 | 0     | 22.05 | 0     | 0.53 |
| 350K PMMA, 1% add., Ag dip | 78.18 | 2.33  | 14.83 | 3.09  | 1.57 |
| 350K PMMA, 3% add., Ag dip | 70.24 | 8.08  | 11.2  | 8.44  | 2.04 |

•E-spinning performed by M. Hunley; T.E. Long at Virginia Tech. Approved for Public Release (JUN 2007)





- Demonstrated repeatable >30 X self segregation of active components to the air/polymer interface in coatings
- HBP scaffold universal. Favorable for attachment of a myriad of reactive species through straight forward chemistry.
- Transitioned to low VOC TPU coating systems
- Demonstrates strong activity (99.9999 % kill) towards environmental hazards: *S. aureus, C. albicans, E. Coli, MRSA*
- Preliminary evidence: Compatible with existing coating systems
- Potential in coated fabrics, latex paints, etc





- Jim Hirvonen
- Cherise Winston
- Heidi Schreuder-Gibson
- Eugene Napadensky
- Triton Systems Inc.
- Norm Rice
- Lawino Kagumba
- Arjan Giaya

- Multifunctional Materials Branch
- 2005 ARL Director's Research Initiative
- ISN 6.2 Research Program
- Triton Systems, Inc.