[dst] UK Hazard Management Research – Peelable Coatings

Dr Norman Govan Dstl Porton Down

Requirement

- When subjected to CBRN threats, force elements require the capability to quickly decontaminate themselves, equipment and areas of tactical significance, in order to survive attack and sustain operational tempo
 - DJtCap, Decon Strategy Paper

Aims

- Research programme seeks to better define the problem (and the capabilities needed to deal with it)
- Better understand the performance limits of passive and active control measures
- Identify and accelerate quick win solutions
- Work with "intelligent" suppliers to develop a system (of systems) incorporating fit for purpose decontaminants, equipments and processes

Technical Strategy

Overarching

disclosure and verification

Enabling •

fundamental science

Reactive Formulations

liquids, gases, aerosols

Tuneable Devices

- mixing, dispensing, stripping
- Coatings
 - absorbent, strippable, reactive

Underpinning

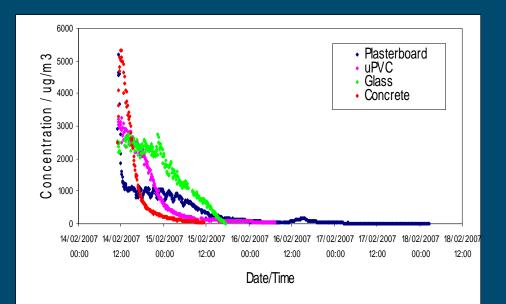
OA, methods, process fundamental, Tech' Watch

Capability Road Map

personnel

•

- platforms
- sensitive equipment and aircraft
- critical infrastructure and terrain
- **Ground Manoeuvre**
- Home Office

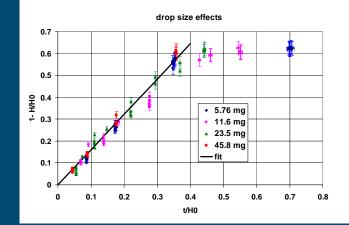


Better problem definition – "what, where, when, how many?"

Operational Analysis

- Personnel Decontamination
- Prioritisation Critical Assets
- Threats and Vulnerabilities AFV (DEC GM)
- Performance Criteria for New Camouflage Coatings
- Radiological Resuspension
- Fate of CW Agent on Building materials (Home Office)

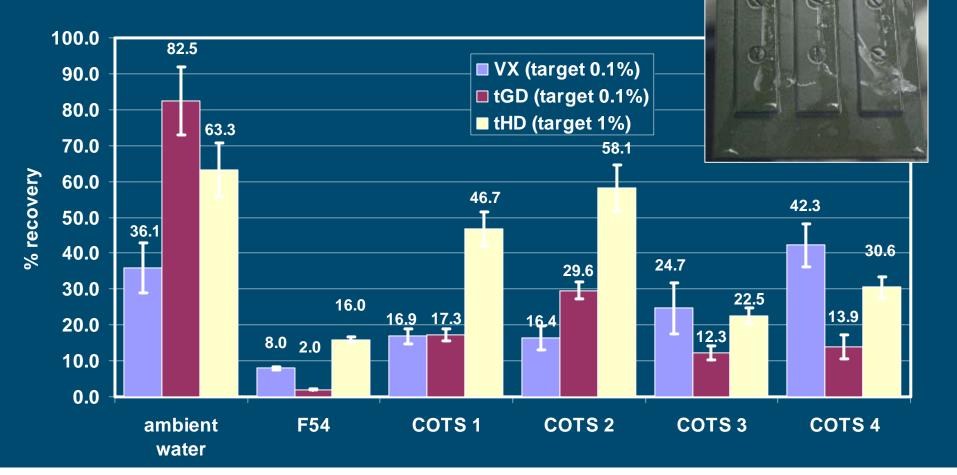
 evaporation of sulfur mustard from building materials made during HO sponsored wind tunnel experiments



06 November [€]993tl 2007

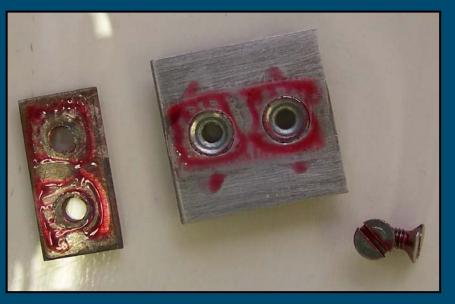
Understanding the performance limits of emerging technologies

- Process fundamentals
- Reactive gases (Home Office)
- Reliability assessment of optoelectronic devices
- Biotech approaches (enzymes and phage)
- Sonicated liquids
- Chlorine dioxide in microemulsions
- CW agent disclosure
- Peelable coatings



06 November ੴ₿štl 2007

Performance limits – decon of complex surfaces

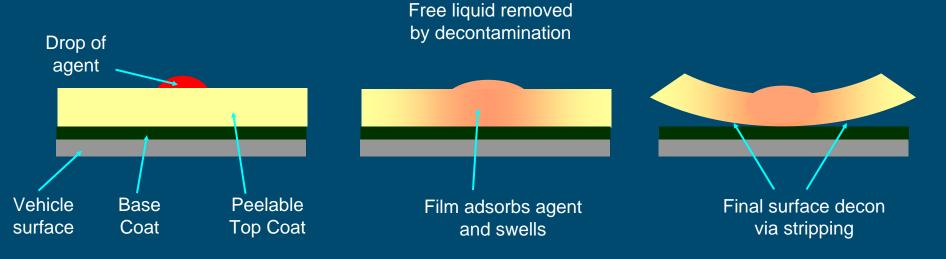

Entrapped agent

 No COTS decon system tested could accomplish required level of clean using current procedures

 COTS technology does not addresses problem of entrapped agent

• So where do we go from here?

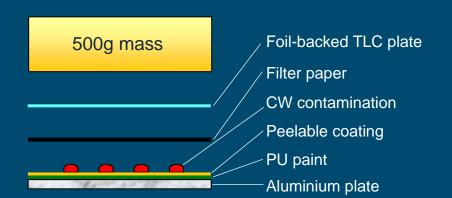
Towards a solution – "Binary Decontamination"



06 November ੴ₿štl 2007

Passive absorbent coating - mode of action

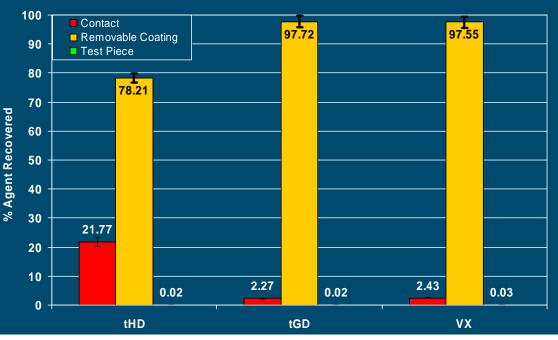
- Paint resin is swelled by the agent
- Liquid decontamination required to remove free-liquid contact hazard
- Agent is partially immobilised but not destroyed diffuses slowly out
- Contaminated coating peeled and disposed of



06 November €⁰95tl 2007

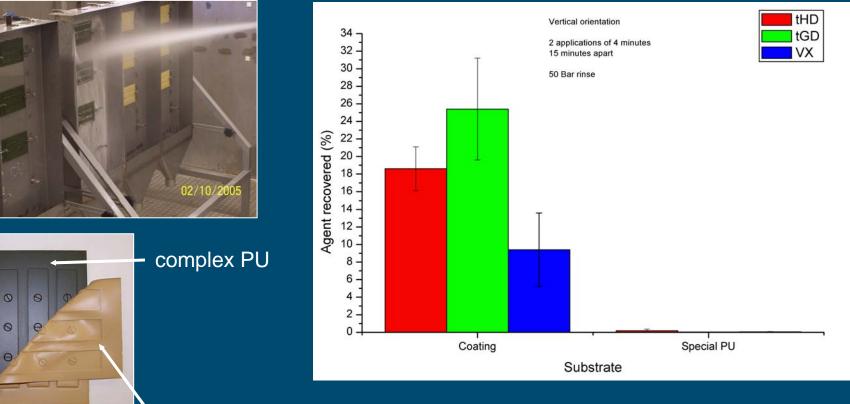
Contact Test Method

- Qualitative laboratory assessment
 - swelling
 - peelability
- Quantitative laboratory assessment
 - free liquid contact hazard
 - agent absorption into coating
 - agent break-through



Absorbent peelable coatings

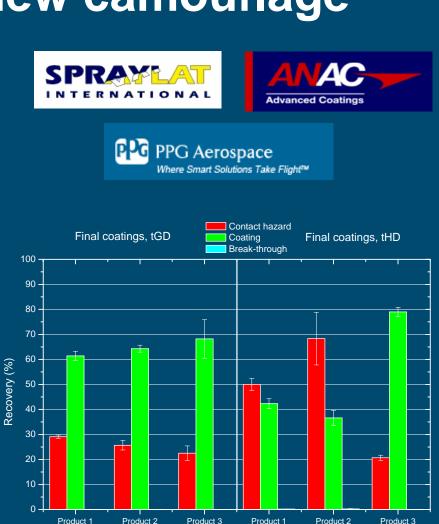
- Programme identified absorbent coatings that
 - readily absorbs liquid CW agents
 - reduced contact hazard
 - prevented
 contamination ingress
 into treated surfaces
 - aid Thorough decontamination when removed



New F54 decon in combination with strippable coatings – CW agent chamber trial

strippable coating

• Only demonstration of Thorough decontamination on complex surfaces in whole system tests


Development of new camouflage coatings

- Three manufacturers engaged to optimise existing formulations
 - maximise absorbance
 - retain peelability and prevent break-through
- Set benchmark criteria for defence standard
- Extensive series of iterative test and reformulation conducted

06 November

€9**9**5tl 2007

 over 30 prototypes coatings and 450 live agent lab experiments

CVRT vehicle – simulant field trial

- Aim to assess Binary decontamination process
 - compare and contrast each manufactures coating in product side-byside on combat vehicles
 - relate contact-test performance to whole-vehicle performance
 - determine coating thickness affects
 - simulated "in-theatre" re-application
 - optimise process

Coating application

 Applied using Kremlin AirMax air-assisted airless system
 200 µm DFT target

Contamination

- Tributylphosphate (TBP)
 - G-agent
- Thickened methyl salicylate (tMS)
 - Thickened sulfur mustard

06 November こののでは、1007

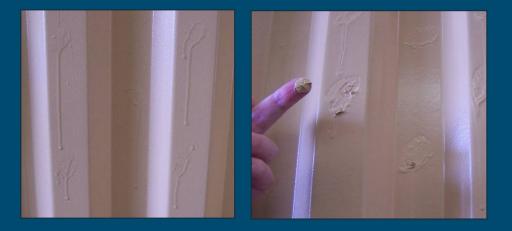
Decontamination

- Spray-then-brush regime
 - Two-man team.
 - 20 L (two fills) per side

- BX 24 decontaminant applied using vehicle-borne decon system (VBDS)
 - In-service vehicle operational decon equipment

Manual stripping

High pressure water stripping


06 November ੴ₿štl 2007

Chemical agent tie-down

- Surface coated to ~200 µm DFT
- Contaminated with tMS and TBP
- 1 hour dwell
- Re-sprayed with coating (no decon)
- Cured over TBP and lightly contaminated tMS
- Failed to cure over gross tMS contamination
- Off-gassing detected
- Stripped successfully

Radiological tie-down

 Application of the tie-down coating on top of an existing camouflage coating

dst

- Reduced re-suspension hazard
- Sandwiched contamination removed when stripped

06 November

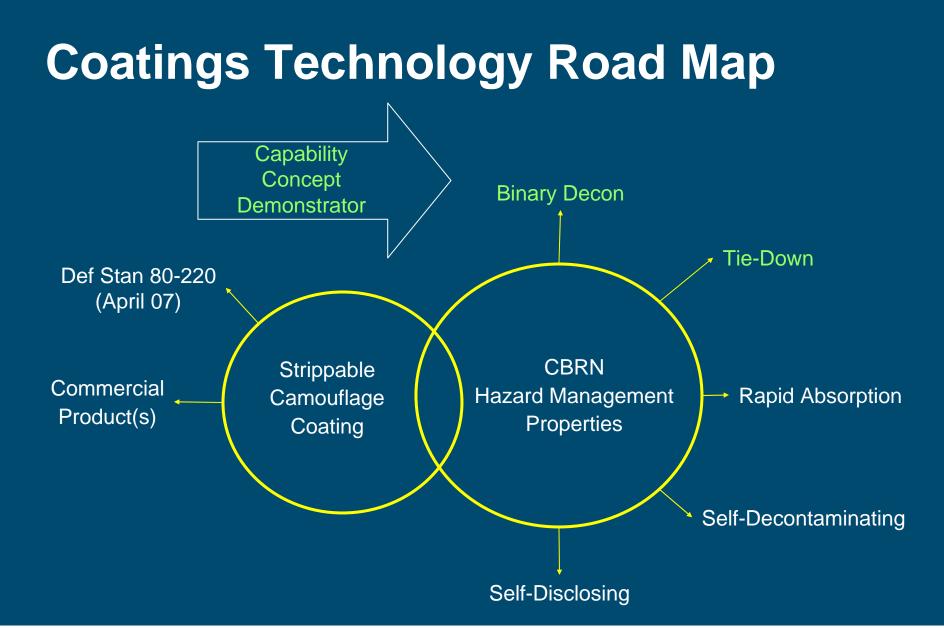
€9**9**5tl 2007

Initial contamination	Maximum	Maximum Stay Times	
(1 GBq/m²)	Alpha	Beta	
Unprotected	3 minutes	39 hours	
After Tie-down	22 hours	50 hours	
After Stripping	225 hours	> 1 year	

Vehicle trial - conclusions

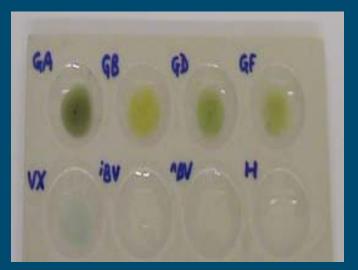
- Laboratory contact test reasonable indication of whole-vehicle performance
 - qualitative observation of contaminated coating on vehicle as expected from contact-test
 - all three final formulations maintained integrity and could be peeled.
- Decontamination had little detrimental effect on the coatings
 - removed majority of free-liquid without damage

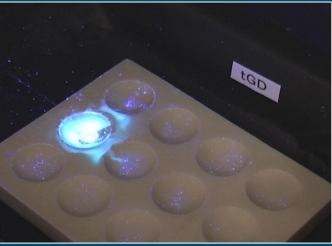
- Optimised stripping regime
 - manual peeling followed by HP water blasting
- 2-300 µm optimum film thickness
- In-theatre reapplication feasible
 - chemical tie-down feasible
- Identified best performing coating
 - best balance of adhesion / cohesion



New coating deployed in-theatre

- New coating procured to Def Stan 80-220
- Op. HERRICK
 - 90 Warriors deployed (June 07)
 - 120 Assorted
 vehicles (August 07)
- Incorporating solar heat-reflecting pigment

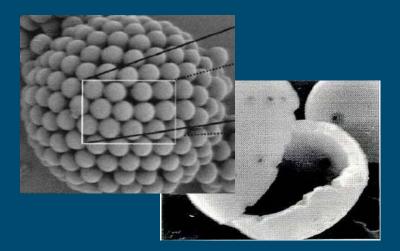



CW Agent Disclosure Coatings

- A simple spray system has been shown to be effective at disclosing low volatility nerve agent
 - produces colorimetric and fluorescent response to nerve agents
- Microporous polymer containing functional moieties also fluoresce in the presence of nerve agent
 - potential use in coatings
- Needed to optimise the response to nerve agents and determine quantitative detection limits (post decon)

06 November

€9**9**5tl 2007



Core/Shell particles

- Widely used where controlled release of liquid needed (e.g. in vivo drug release)
 - the cores can be oil or water
 - the shells can be inorganic or polymeric
 - the release rate profile may be varied by careful control of the nature of the shell and the form /concentration of the active ingredient
 - release may be solely timedependent, or triggered by chemical disruption of shell

- Assess the feasibility of CW agent-triggered release of core contents
 - self-decontaminating coatings
 - self-disclosing coatings

In summary

- Outputs from basic science and OA being used to better define concepts of use for new capability areas
- Assessments of several emerging technologies have been screened against developing requirements
- Industrial suppliers being engaged to deliver required capabilities
- Quick win solutions using strippable camouflage coatings being fielded

