

Chemical Warfare Operational Toxicity Exposure Standards - Their Care, Feeding and Husbandry!

Protection and Decontamination Conference 22-26 October, 2007

Dr. Steve Channel, DRIV (GS15), USAF PM, Operational Toxicology, BioAgent Fate AFRL/HEPC@APGEA, MD DSN584-8872, Comm: 410-436-8872 Stephen.channel@us.army.mil 1

- How did we come to this??
 - The drivers and history of the Low Level Tox Research Program
- What do we need in an operational exposure std?
 - Operational applications vs. general civilian population
 - Essential elements in a military application
- What have we done to address the problem?
 LLCWA Operational Toxicology Research Program
- So What? Translating the science
 - There are standards and there are standards...what????

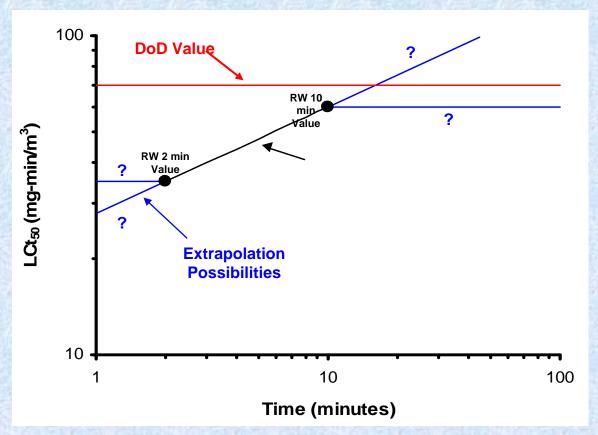
How did we come to this?

- 1990-1991: Persian Gulf Crisis/ Gulf War
 - Kamasia; Gulf War Illness (GWI)

What do we REALLY know about the effects of exposure to Chemical Warfare Agents?

Post-deployment

- Military and Veterans Health Coordinating Board
- Veterans Affairs
- GWI Research Program
- Deployment Health and Medical Surveillance


Operational

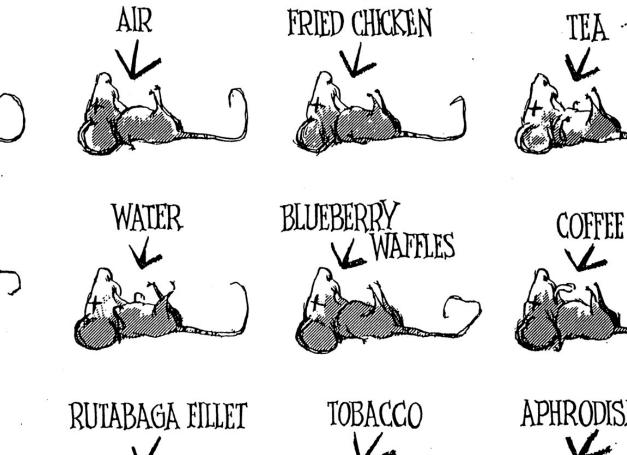
Army Chemical Defense Equipment Process Action Team (CDEPAT) tasked by USA SG to:

" review the toxicity data for... nerve agents (GA,GD,GD,GF,VX)....and the vesicant agent sulfur mustard (HD) and to establish a set of exposure limits that would be useful in protecting soldiers from toxic exposure to those agents."

How did we come to this?

Limited Dataset

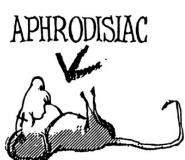
- 2-10 Minutes
- Lethality endpoint
- Persistent Effects?


Model assumptions

•Linear (Haber's Law)

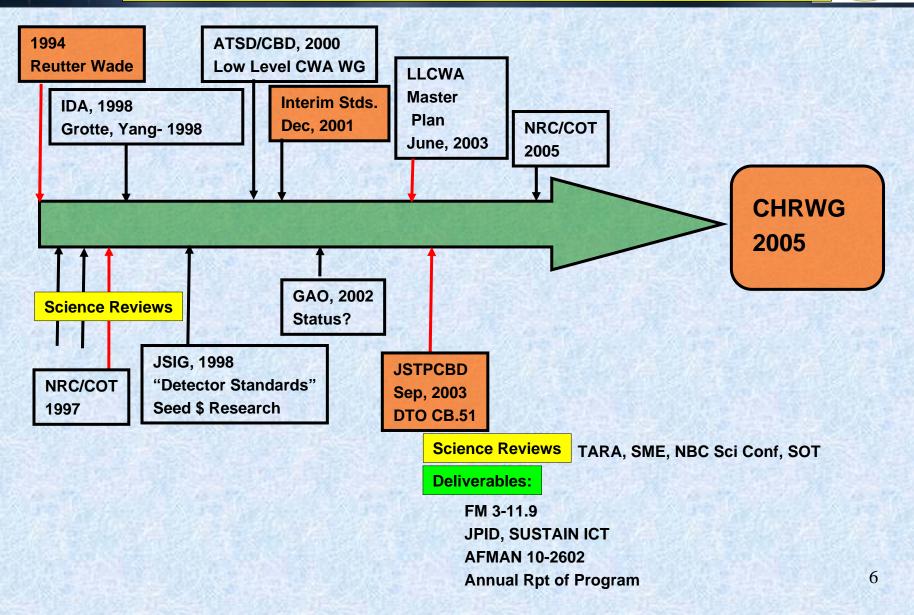
We REALLY didn't know, or have data to support appropriate operational exposure values!!

How did we come to this?


SACCHARIN

MALTEI

MILK BALLS

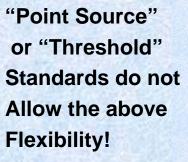


 \mathbf{O}

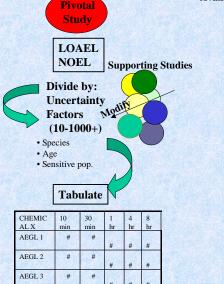
臺

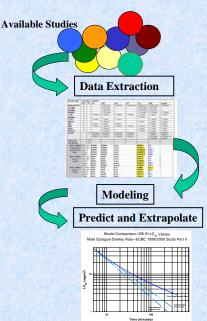
How did we come to this?

AND TECHNO



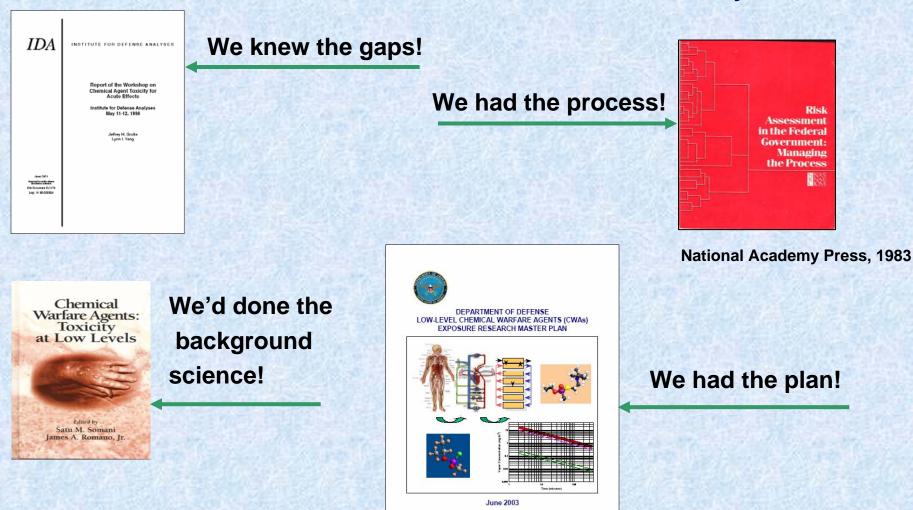
What do we need in an Operational Exposure Std??


Essential elements in a military application:


- The ability to extrapolate in time to address mission profiles!
- The ability to predict casualties and their probability
- The ability to anticipate consequences at various levels of risk
- The ability to associate the variability with a prediction

Result:

Evacuation!


Metanalysis and statistical analysis modeling, when linked to targeted and focused studies provides maximum flexibility

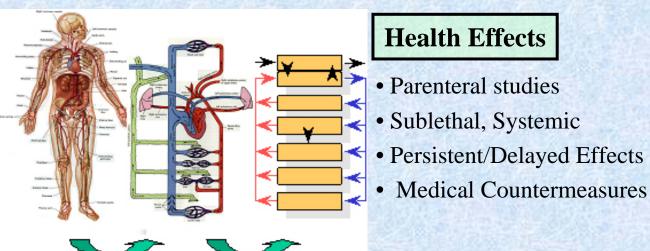
Result:

Continue mission with appropriate TTP

What Have We done to address the Problem?

How did we know the what was necessary?

8


What Have We done to address the Problem?

Inhalation Studies

- Dose-Response
- Conc-Time Profile
- Miosis and ChE

Integration Studies

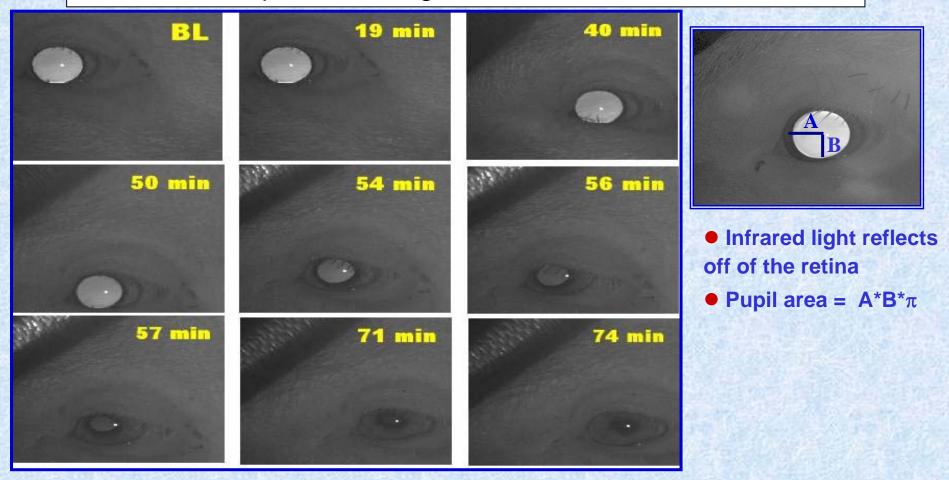
- Biomarkers/Physiologically Based Pharmacokinetics (PBPK)
- Route/Species Extrapolation
- Risk Assessment application

One Product

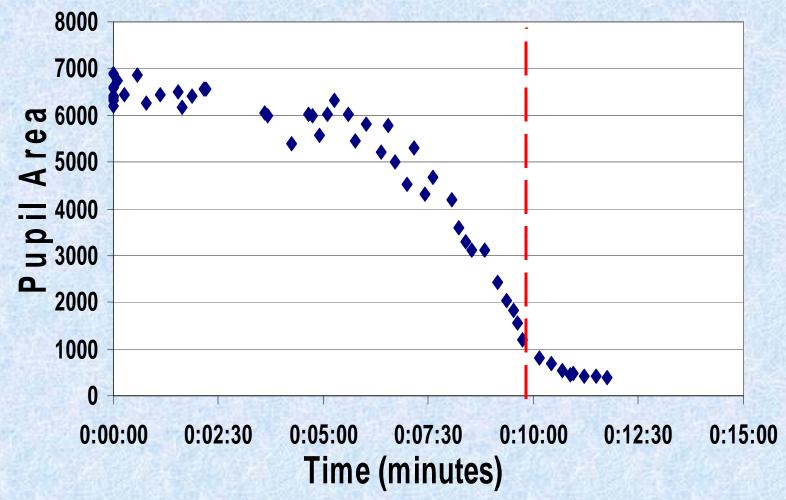
Science-Based Exposure Standards for Deployed Forces

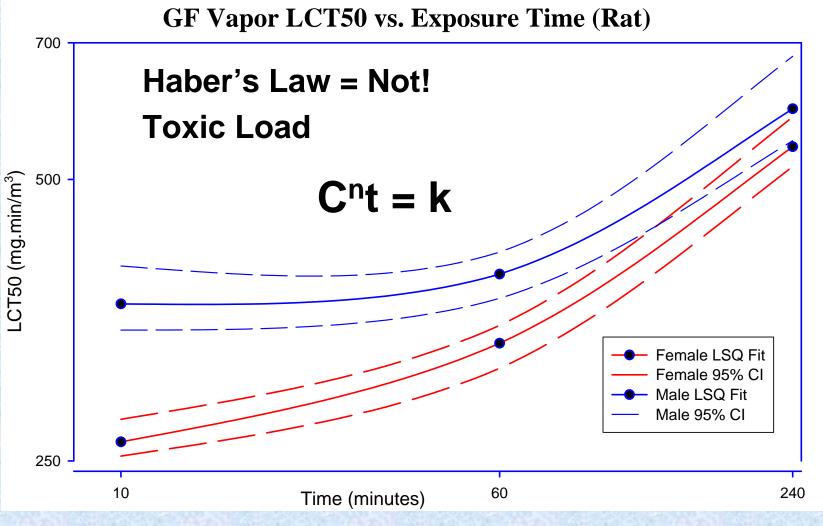
What Have We done to address the Problem?

Whole-body VX Vapor Exposure in Swine


- 1000 L dynamic airflow chamber
- VX generation system contained in glove box
 - Vapor Sampling / GC Analysis
- Pig placed in sling
- Respiratory belt and ECG leads attached to pig and leading to Biologic headbox.
- Jugular catheter passed through ports
- IR images of pupil taken through Plexiglas

What Have We done to address the Problem?


Example of Nerve Agent Vapor-Induced Pupil Size Changes Over Time in Swine


What Have We done to address the Problem?

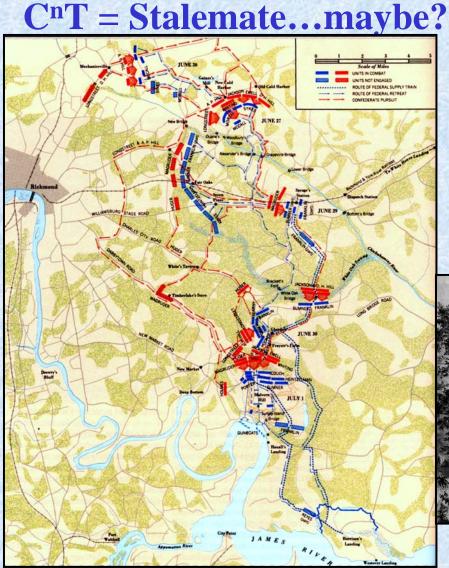
Time Course of Nerve Agent Vapor-Induced Pupil Constriction in Swine

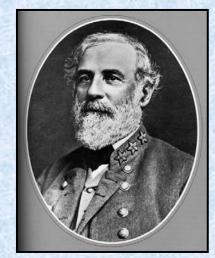
What Have We done to address the Problem?

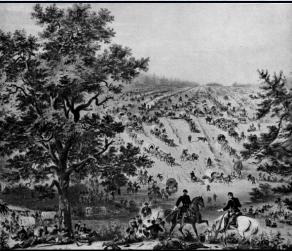
What Have We done to address the Problem?

Gen.G. A Custer

Cⁿ**T** = **Annihilation!**

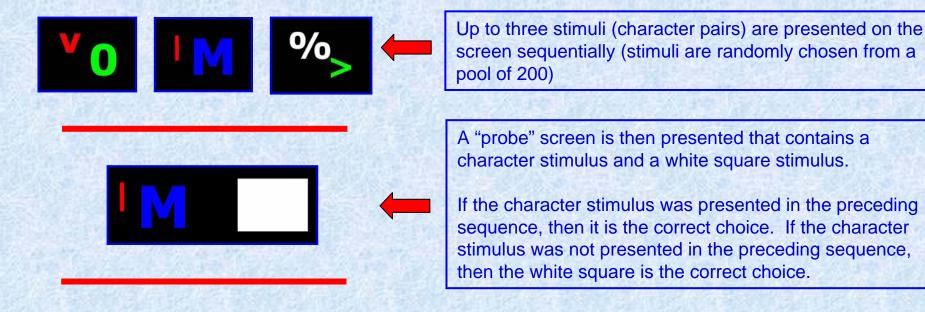

Sitting Bull


What Have We done to address the Problem?



Gen. Geo. McClelland

Gen. Rbt. E. Lee



The Retreat! 15

AND TECHNOLOGY OF FOR

What Have We done to address the Problem?

Performance Endpoint: Serial Probe Recognition Test (SPR)

• Major dependent measures for the test are <u>accuracy</u>, <u>response time</u>, and <u>number of trials completed</u> during a fixed length session.

• Yields a powerful measure of cognition and has been used with human and non-human primates. It has also been used previously to evaluate the effects of CWNAs.

What Have We done to address the Problem?

African Green Monkey – SPR, IM GB

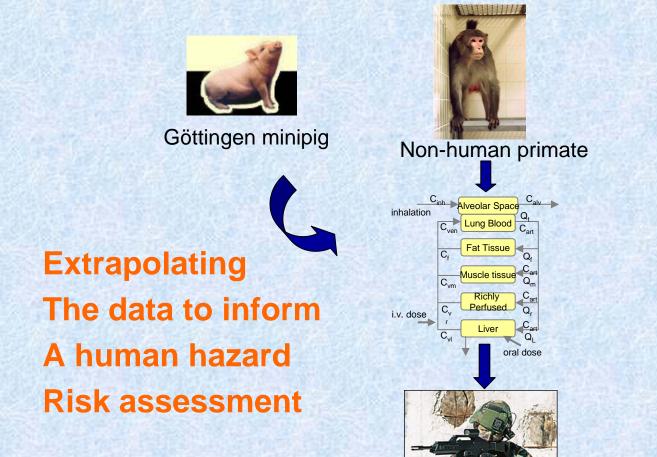
Single trial on the SPR, List Length=3, test stimulus is from list, <u>correct choice response</u>

Species Body Mass (kg)

10

100

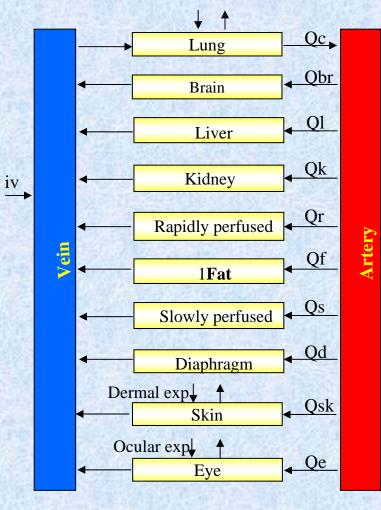
30

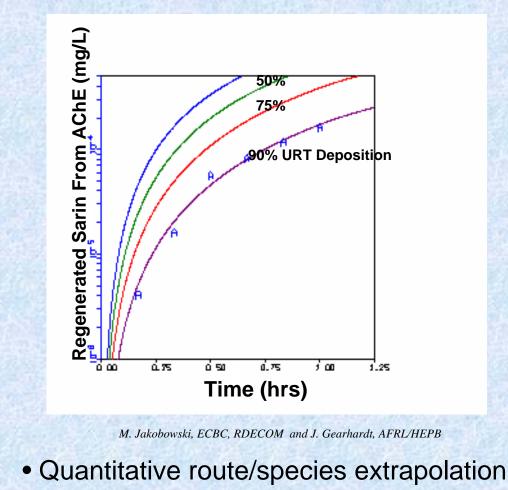

0.01

0.1

What Have We done to address the Problem?

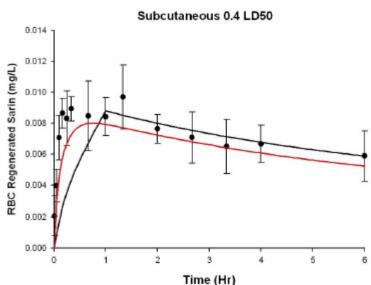
Warfighter


Guinea Pig


Multispecies Dose Route Equivalency Using PBPK/PD

What Have We done to address the Problem?

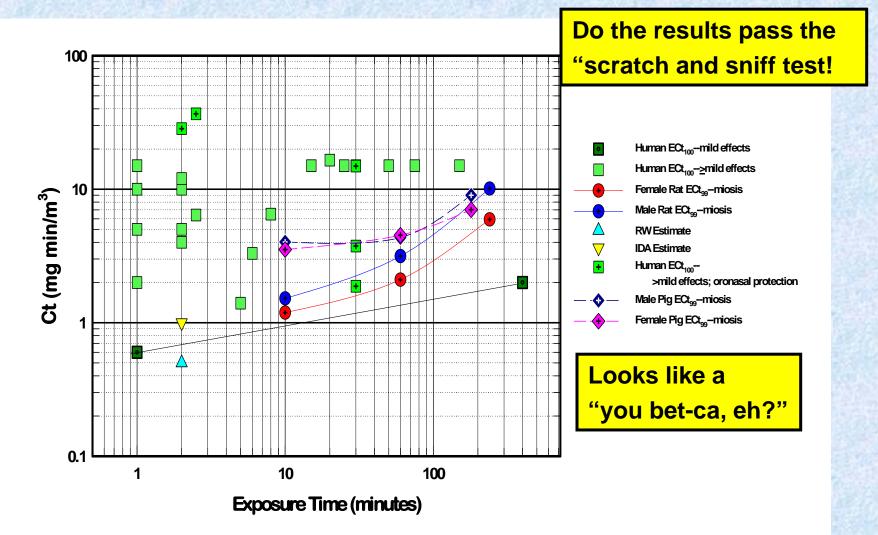
Physiologically based Pharmacokinetic/Pharmacodynamics


Based on PBPK/PD studies

20

What Have We done to address the Problem?

Cross Route Exposure Validation


Physiologically based
 Pharmacokinetic/Dynamic Model (PBPK/PD)
 predictions (lines) vs. dose-metric data
 (points; regenerated agent, blood)

• Subcutaneous exposure route kinetics can now be described as an equivalent inhalation challenge! PBPD models will relate kinetic profiles to probability of effect.

What Have We done to address the Problem?

So What: Translating the Science!

Agent	Parameter	Value/Probit Slope							
vx	LCt50	Percutaneous vapor	150/6 {12}						
vx	LCt50	Inhalation vapor	15/6 {1}						
VX	ECt50, threshold {2}	Percutaneous vapor 10/6 {3}							
vx	ECt50, severe {4}	Percutaneous vapor	25/6						
vx	ECt50, severe {4}	Inhalation vap	10/6						
vx	ECt50, mild {5} Inhalation vapol 0.1/4 {3}{14}								
vx	VX LD50 Percutaneous liquid 5/6 {1}								
vx	ED50, severe {4}	Percutan ous liquid	2/6 {1}						
	Tal	ble 6. H. Toucity values							

Table 6. 7 Totachy Artes								
Agent	Parameter	Koute of Entry	Value/Probit Slope					
HD	LCt50	rect aneous vapor	10000/7 {15}					
HD	LCt50	In ala in vapor	1000/6 {1}{16}					
HD	ECt50, threshold, moderate temperature {13}	Persutaneous vapor	50/3 {17}					
HD	ECt50, threshold, hot temperature {13}	Pe cutaneous vapor	25/3 {17}					
HD	ECt50, severe, pro- ate temperature {18}	Percutaneous vapor	500/3 {17}					
HD	ECt50, severe, hot temperature {18}	Percutaneous vapor	200/3 {17}					
HD	ECt50, severe {19}	Ocular vapor	100/3 {3}					
HD	ECt50, mild {19}	Ocular vapor	25/3 {3}					
HD	LD50	Percutaneous liquid	1400/7 {1}					
HD	ED50, severe {18}	Percutaneous liquid	600/3 {1}{20}					

Name For Database 1 of

11.1 The work data product to a which the data data and appendix and provide which regard to product shape. There is a final state of the second state of the secon

So What: Translating the Science!

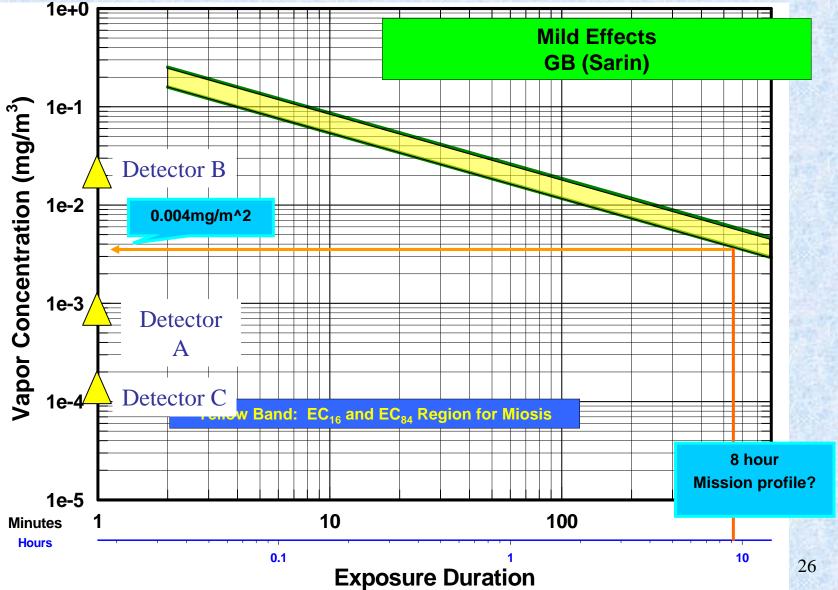
33	Operational Expos	ure Values - Inhal	ation Vapor GB		
	Endpoint	Approved Interim (2min) Exposure{Slope}	Revised (2min) Exposure{slope}	Time Extrapolation Exponent	
L	ethality - LCt50 mg*min/m3	35{ <mark>12</mark> }	35{12}	1.5	
S	evere (Incapacitation) - ECt50 mg*min/m3	25{ <mark>10</mark> }	25{12}	1.5	
M	lild (Threshold) - ECt50 mg*min/m3	1{5}	0.4{10}	1.5	
3	Operational Expos	ure Values - Inhal	ation Vapor GF		
Le	ethality - LCt50 mg*min/m3	35 { <mark>12</mark> }	43{12}	1.25	
S	evere (Incapacitation) - ECt50 mg*min/m3	25{ <mark>10</mark> }	31{12)	1.25	
M	lild (Threshold) - ECt50 mg*min/m3	0.4 { <mark>14</mark> }	0.4{10}	1.5	
2	Operational Expos	ure Values - Inha	ation Vapor VX		
L	ethality - LCt50 mg*min/m3	15{ <mark>6</mark> }	15{10}	1	
S	evere (Incapacitation) - ECt50 mg*min/m3	10{ <mark>6</mark>)	10{10}	1	
M	lild (Threshold) - ECt50 mg*min/m3	0.1 { <mark>4</mark> }	0.04 {4}	1	
é	Operational Expos	ure Values - Inhal	ation Vapor GD		
L	ethality - LCt50 mg*min/m3	35 { <mark>12</mark> }	FY07	FY07	
S	evere (Incapacitation) - ECt50 mg*min/m3	25{ <mark>10</mark> }	FY07	FY07	
M	lild (Threshold) - ECt50 mg*min/m3	0.4 { <mark>6</mark> }	FY07	FY07	
	Operational Expos	ure Values - Inhal	ation Vapor HD		
L	ethality - LCt50 mg*min/m3	1000{ <mark>6</mark> }	As Stated	As Stated	
S	evere (Incapacitation) - ECt50 mg*min/m3	100 { <mark>3</mark> } occ	As Stated	As Stated	
M	lild (Threshold) - ECt50 mg*min/m3	25{3) occ	As Stated	As Stated	

So What: Translating the Science!

Begin with the end in MIND!!!

Exposure Estimates for Joint Platform Interior Decontamination (JPID) Operational Requirement Document (ORD) Efficacy Review

> 12 October 2004 Updated: 31 October 2006)


Dr. Steve Channel, USAF, AFRL Dr. Sharon Reutter, RDECOM, ECBC Mr. Doug Sommerville, RDECOM, ECBC Ms. Erin E. Shockley, RDECOM, ECBC **Stephen Covey**

Example Questions:

- I have a piece of equipment (aircraft) that is contaminated at (XXmg/m2); Can it be used effectively? For how long? (hazard)
- Will personnel require some form of protection? (mitigation)

So What? Translating the science!

So What: Translating the Science!

Here is reality!

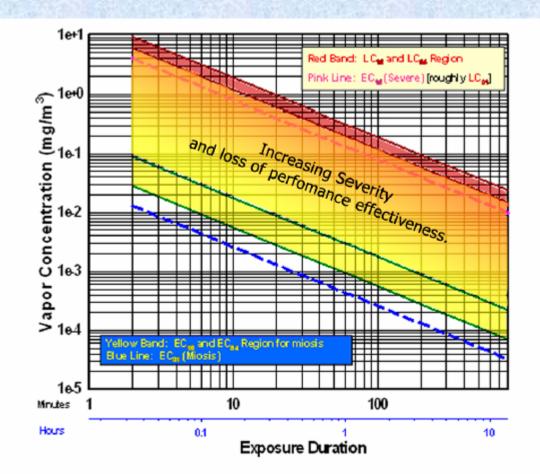


Figure E.2.3 Graphical Representation of VX Vapor Dose Profile (Inhalation/Ocular Exposure) LCtxx and ECtyy vs. Exposure Duration

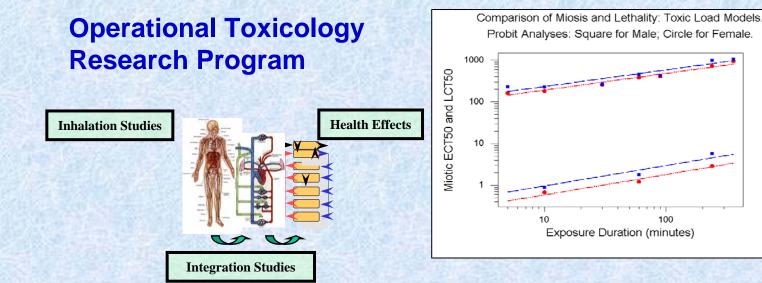
So What: Translating the Science!

ChemR/	AT - 1.0	.2 - [ChemRA	Τ]							_ 8	
<u>Eile ⊻</u> i	ew <u>H</u> e	lp								_ 8	
jent:	16	scosity	Weapon System	#Wea	nonc	Target Area	Surface	Temperature	Wind	Stability Categ	
						_					,01
D	▼ Ne	at 💌	TBM Air (0 CEP)	• 2	-	Large 🔻	Concrete	▼ 10 C ▼	3 m/s ▼	D	
Risk	1	Detector	Casualties			Attack Files					
					_	7 utuek 1 nes		AGENTFAT			
1											. –
Exposure ⁻	Туре:	Inhaled	✓ Protection:	NONE	· ·	00 percent of	f target ha	s lower dosage	[12 hour:	s exposure]	
Exposure	Duratior	12 hours	▼ Area Coverage:	Peak	-	1000.071			L		
						500.000		<u> </u>			
Risk											
∏ <u> </u>	igh		Hazard Time (Hour	s):							
	Percen			Std Dev				\sim			
L	.Ct	16 689.0410	0 2.63 2.63	2.63	6	100.000					
1	Ct	16 68.903	8 13.36 13.36	13.36	n/m^	ICt 50.000					
· Th	Ct 🗌	16 11.8693	3 21.42 21.42	21.42	Dosage (mg * min / m^3)	50.000					
					e (mg						
			population affected Ity level cannot be obtained		Dosag						
$\overline{}$,			ThCt 10.000					
_ l	ow									L	
										γ	
						1.686					
						1.686	2.000	(Number of Hours After	20.000	40.000	72,000
							Hazard Time	(Number of Hours After	Attack) 🔨	4	C
											►

Conclusions and Discussion

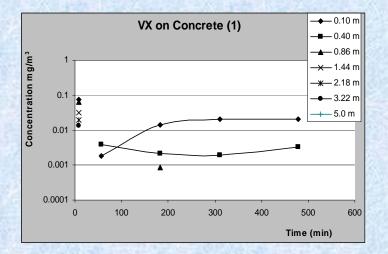
What is it we are after here?

Operational exposure standards?

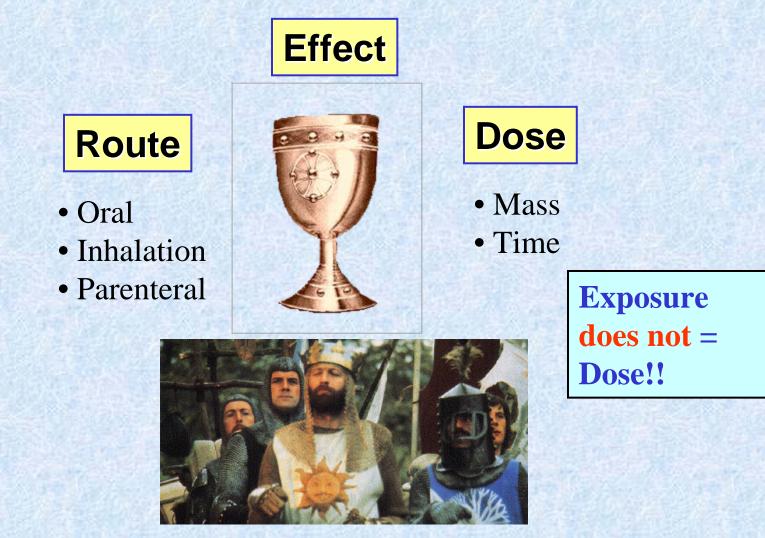

- Higher levels of acceptable risk {the "Dirty Harry" factor}
- Mission imperative; just "quitting" isn't an option
- Trained, equipped and healthy military population
- Classified data is absolutely OK!

Restoration/Remediation standards?

- Must consider the end use and exposure population
- Evaluation and removal from exposure is very OK!
- May have to survive the public review process
 - Excludes the larger data set available
- Primary focus is on planning and monitoring


Both are part of a spectrum and policy will determine the wavelength!

Agent Fate Research Program



100

Backups

"And who are you who are so wise in the ways of science??!!" Sir Bedemir 32

Technical Approach – Performance Evaluations - SPR

Single trial on the SPR, List Length=3, test stimulus not from list, <u>correct choice response</u>

What's Next??

CB.69 Chemical Warfare Agent Operational Exposure Hazard Assessment Research

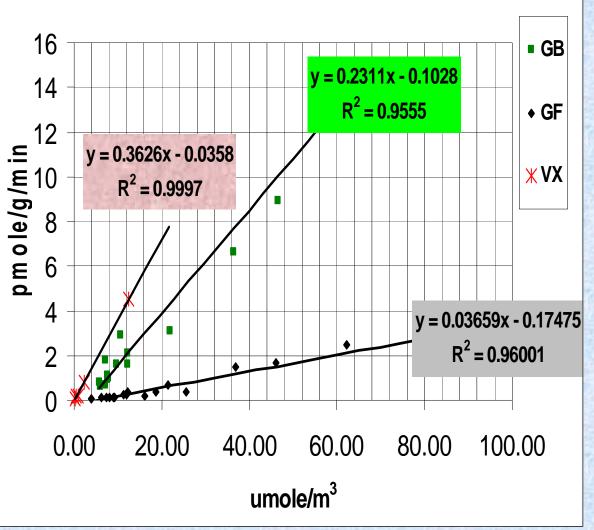
Transformational Capabilities:

1c. Chemical Defense (Primary)

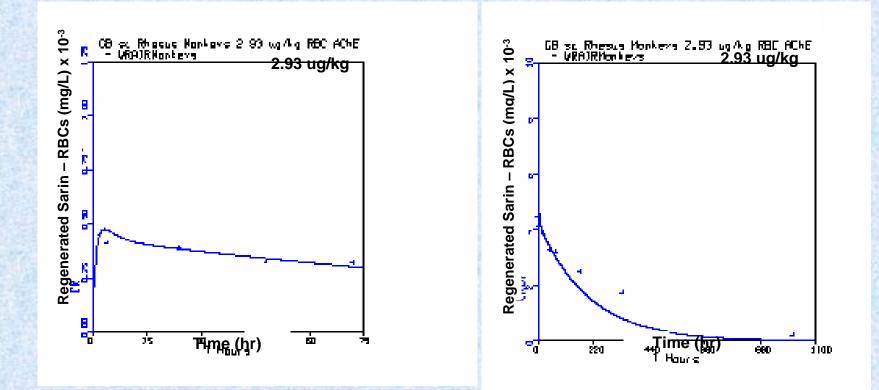
3d. Warfighter Readiness, Survivability, and Sustainment **Objectives.** This DTO will deliver data sets on operationally-relevant health effects of low-level exposure to the class of chemical warfare agents (CWAs) termed "Non-Traditional Agents (NTAs)".

Supported Functional Concept(s):

Protection (Primary)


CB.69 S&T Funding (Dollar Amounts in Millions)

PE	Project	FY07	FY08	FY09	FY10	FY11
0602384BP	CB2	6.0	8.0	8.0	8.0	8.0
0602384BP	TC2	1.0	1.0	1.0	1.0	1.0
	DTO Total	7.0	9.0	9.0	9.0	9.0


The dose-metric: Regenerated Agent

There is a definite linear correlation between the amount of GVX/RGB/RGF seen in the RBC per minute of exposure and the exposure concentration in male minipigs at lethal levels. Molar units present a more accurate picture.

GB i.m. Rhesus Monkey

Dr. Genovese, WRAIR

VX Vapor Generation: Stable, Verifiable of Concentrations Generation of stable/ verifiable GB VX exposure atmospheres Nitrogen gas passes through $C_4H_{10}PO_2$ C₁₁H₂₆NO₂ PS Molecular saturator cell Formula To Chamber Inlet Molecular Wt. 140 267 **Carrier** Gas Inlet (g/mol)Vapor 2.1 mm 0.0007 mm Saturator cell Hg Pressure Hg heated to @ 20 °C 60-100°C Vapor Density 4.86 9.2 Ceramic Glass (Air = 1 STP)Thimble Cell **Liquid Density** 1.10 @ 20 1.008 @ 20 **Constant-Temp** (g/mL)°C °C VX Liquid Bath **Saturator Cell**

37

10.5 @ 25 °

С

22000@

25 °C

Volatility

 (mg/m^3)