Common Low-cost IM Explosive Program to Replace TNT

Joint U S Army & U S Marine Corps

Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition
Briefing Outline

- Background and Introduction to IMX-101, -102 and -103
- Manufacturing Overview
 - Non-traditional Ingredients
 - Large Scale Manufacture
 - DNAN, NTO
 - Lab Scale Manufacture
 - Nitrate Salt Eutectic
 - Compositions
 - Large Scale Manufacture - IMX-101, IMX-102
 - Lab Scale – IMX-103
- Strategic Supply Capability
 - Current Capacity
 - Pricing and Availability
Background and Introduction

- PM-CAS Common Low-cost IM Explosives Program
- Seeking IM Explosives that are:
 - Effective
 - Less sensitive
 - Affordable
 - Producible
 - Life-cycle compliant
- Phased Evaluation Program
- Led to 3 Primary Candidates
 - IMX-101, -102, and -103
- Undergoing Qualification Testing (Phase 3)
- Formulations & Ingredients:
Formulations

- Largely composed of “non-traditional” ingredients:

<table>
<thead>
<tr>
<th>Formulation</th>
<th>AKA</th>
<th>Non-traditional Ingredient(s)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMX-101</td>
<td>OSX-CAN</td>
<td>DNAN, NTO</td>
<td>DNAN</td>
</tr>
<tr>
<td>IMX-102</td>
<td>MCX-8</td>
<td>NTO</td>
<td>NTO</td>
</tr>
<tr>
<td>IMX-103</td>
<td>DEMN-III J</td>
<td>Nitrate Salt Eutectic</td>
<td>Eutectic</td>
</tr>
</tbody>
</table>
Review of Business Case of Down-selected Candidates

“Funnel” framework to progressively screen candidates

- **Filter 1 Criteria**
 - Cheetah Calculations
 - Standard Safety Tests
 - Electrostatic
 - Friction Impact
 - Sensitivity
 - Vacuum Thermal
 - Stability
 - Differential scanning
 - Critical Diameter

- **Filter 2 Criteria**
 - Tier 1 IM Tests (BI, FI, SCO)
 - Tier 2 IM Tests (SD)
 - Tier 3 IM Tests (FCO, SCJ)

- **BCA Criteria**
 - IM Tests, Lethality, Logistics, Safety, Platform
 - Performance of the alternatives against weighted factors
 - Risk analysis
 - Comparable cost analysis
 - Sensitivity Analysis

- **Munitions Fill Types**
 - Filter 1 -- Safety & Performance
 - Pass / Fail
 - Must Show Improvement
 - Filter 2 -- Insensitive Munitions
 - Business Case Analysis (BCA)
 - Utility
 - Life-cycle Costs
 - Risk Analysis

- **IM Explosive Fill**
 - for 120mm and/or 155mm

- **Review of Business Case of Down-selected Candidates**
 - “Funnel” framework to progressively screen candidates

- **Focus on Ingredient and Composition Producibility**
Manufacturing Producibility
Non-Traditional Ingredients

- **Cost of ingredients:**
 - DNAN
 - NTO
 - Nitrate salts

- **Strategic Synthesis Capability**
 - Current, active manufacturing capacity at HSAAP (as of 2007)
 - Ingredients synthesized in the HSAAP Agile Plant
 - Combined DNAN/NTO capacity is ≈2-3m LB / year
 - Using existing facilities and infrastructure
Agile Plant Manufacture Overview

- Reported at Prior IM EM Conferences
- Established in CY2001
 - 2,000 Gallon Reactor at Heart of Facility
 - Installed in a facility designed to be flexible in operation
 - Rapidly reconfigurable
 - Multi-purpose chemistry capability
 - Extensive infrastructure support
 - Expandable
- Presently used for the LARGE SCALE manufacture of:
 - DNAN
 - NTO
 - DMDNB
 - Special grades of PETN, RDX
 - TATB
 - R8002 (short-term future production)
Product Collection: Nutsche De-watering

Pfaudler 2,000 Gallon Reactor

Process Control – SIEMENS PCS-7
2,4-Dinitro anisole (DNAN)

- Batch-Manufacture
- A Good Melt-phase Insensitive Substitute for TNT
 - A critical component of IMX-101
- Two Synthetic Routes Demonstrated on Production Scale
- Multiple raw-material sources (U.S., international)
- Qualified in U.S. Weapon Systems
 - PAX-21 (60mm Mortar)
 - PAX-41 (SPIDER)
HSAAP DNAN – INDICATIVE PRICING

Single-shift Batch Operation

Single-shift Multi-batch Operation

24/5 to 24/7 Continuous Operation

Note: Prices subject to formal RFQ review.

ITAR Approved
Nitrotriazolone (NTO)

- **Batch Manufacture**
 - Synthesis based upon published route
 - Modified to improve safety and productivity
 - Multiple raw-ingredient sources

- **Used as an insensitive RDX Replacement**
 - Critical for achievement of adequate product functioning
 - Performance and sensitivity
 - Available in various particle sizes
 - Key to achieving desired processability
HSAAP NTO – INDICATIVE PRICING

Note: NTO pricing is influenced by a key raw-ingredient index, linked to oil prices. Prices subject to formal RFQ review.
Nitrate Salt Eutectic

- Manufactured on Lab-Scale only to Date
- Elegant Salt Manufacturing Method
 - Water-based synthesis
 - Acid-base neutralization
- Robust Salt Eutectic
 - Insensitive to composition variation (+/-2% tested)
Melt-Pour Explosive Manufacture

- **Traditional Melt-Pour Technology**
 - Melt-phase ingredient (TNT, DNAN, Wax etc.)
 - Fillers (RDX, NTO, etc.)
 - Low-shear incorporation
 - Flaking
 - Quality control / assurance, final packaging

- **Industrial Capacity**
 - Current active capacity: 6m LB / year
 - Surge capacity >25m LB / year

- **Life-cycle Management**
 - IMX-101, -102 and -103 are melt-pour explosives
 - Existing Demil technology base applies to IMX products

Test Quantities of IMX-101 and IMX-102 Manufactured on FULL PRODUCTION SCALE at HSAAP in support of PM-CAS Common Explosive Program (1,500 LB nominal batch size)
Concluding Remarks

IMX-101, -102 and -103 Candidates for 155mm Artillery Projectile

- Contain “non-traditional” ingredients
 - NTO, and/or DNAN, or nitrate-salt eutectic
- NTO and DNAN produced on full production scale
- Nitrate-salt eutectic producible on same scale (not yet demonstrated)
- Raw ingredients available CONUS and OCONUS
- IMX-101 and -102 Manufactured on full production scale

Demonstrated IM Compliance
Results far exceeded expectations
Safe, Suitable & Sustainable
Acknowledgements

- ARL
- ARDEC
- BAE Systems
- PM-CAS
- DZI (Kansas)
- NTS
Briefing Session Summary

- Common Low-cost IM Explosive Program – Jim Rutkowski, PM CAS
- The Characterization of IM Explosive Candidates for TNT Replacement
- Manufacture of Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition – Andrew Wilson, BAE Holston OSI
- IM HE Loading of 155 mm Projectiles – Erik Boykin, US Army ARDEC