42nd Annual Armament Systems: Gun and Missile Systems Conference

Energetic Materials to Meet Warfighter Requirements: An Overview of Selected US Army RDECOM-ARDEC Energetic Materials Programs

Mr. Steven Nicolich
Chief, Energetics & Warheads Division
US ARMY RDECOM-ARDEC
Picatinny Arsenal, NJ
(973)-724-3016
steven.nicolich@us.army.mil

Presented by:
Dr. Rao Surapaneni
US ARMY RDECOM-ARDEC
Picatinny Arsenal, NJ
Outline

Selected US Army RDECOM-ARDEC Energetic Materials Programs

- Reactive Materials
- Insensitive Munitions Technology
- High Energy/High Blast Explosives
- Nanocrystalline Energetics & Nano Composites
- Summary
Reactive Material Applications

- Demolition Shaped Charge (BAM-BAM)
- Reactive Fragmentation
- EFP RM
- EM Splat
- Reactive IM Liners (PIMS)
- Active Protection System
- Low collateral damage
- Structural energetic
- KE Rod
- IED defeat
- Chemical agent defeat

Constant Volume Explosion 3cc/gm

Constant Volume Explosion 1cc/gm
Unitary Demolition Reactive Material Warhead

Barnie SC Concept “The Rubblizer”

High-Rate Dynamic Continuum Modeling

- Incorporates defeat mechanism of a two stage munition into single unitary warhead concept!
- The most effective unitary demolition warhead currently known!

Scaled up “Bam-Bam” Warhead

Roadway Cratering Test

- 8.5 in
- Bam Bam on test stand
- 24 ft wide roadway
- 5’ X 5’ Target
- Bam Bam Crater!!

PAM Bridge Pier Target Testing

- 38” Diameter Crater!
- No Barnie
- Barnie!

Barnie SC Concept “The Rubblizer”

- Incorporates defeat mechanism of a two stage munition into single unitary warhead concept!
- The most effective unitary demolition warhead currently known!
REACTIVE MATERIAL
ENHANCED LETHALITY EFP

Explosively formed long penetrator with follow-thru grenade for enhanced behind target effects.
IM TECHNOLOGY

- **IM ATO**
 - Warhead Venting
 - Predictive Technology M&S
 - Gun Propellant

- **PEO AMMO IM Energetics Thrusts**
 - Explosives
 - Gun Propellants
 - Warheads

- **Major Customer Program**
 - 155mm Artillery TNT Replacement
 - 120 mm Mortar Composition B Replacement

- **High Performance Computing Software Applications Portfolio**
 - Insensitive Munitions (IM) Modeling & Simulation (M&S)

- **OSD – IM S&T D-Line Program**

Six Threats

- Fast cook-off (FCO)
- Slow cook-off (SCO)
- Bullet impact (BI)
- Fragment impact (FI)
- Sympathetic detonation (SD)
- Shaped Charge Jet Impact (SCJ)
IM ATO provides technology for reducing the vulnerability and hazard of the Army’s future munition portfolio.
IM Warhead Venting for Cook-off Response Mitigation (Tech Base/PEO Ammunition Leveraging)

ARDEC Tech Base Small-Scale 1” Test (In-House)

PEO IM Venting Large-scale 3” test

Vinnting Thrust

Techbase transfer For PEO Demo

Ignition

Tech base ignition and burn modeling:
Predict and design ignition and required venting calibrated using small scale tests

Pressure Transducer Port
Predictive Technology Description
FI/BI/SD IM Warhead Development

NLOS-LS & MRM Impact Modeling

NLOS-LS & MRM SD Modeling

• BI/FI/SD Modeling Results Provide Design Capabilities to Mitigate Responses
• MRM & NLOS-LS: Being Designed to Pass IM Tests!
PEO AMMO IM Propellant Thrust Evaluation of Non-Nitroglycerin Propellants

<table>
<thead>
<tr>
<th>NG Free Propellant</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![NG Free Propellant Image](image1) | • Propellant formulations with NG sensitive to ignition from outside stimuli (Poor IM characteristics)
• Potential of a basic non-NG propellant formulation that can be tailored through changes to grain geometry to work with a wide range of munitions
• Feasibility study to test and evaluate non-NG extruded propellants for use in DOD munitions items (medium cal and mortar) |

<table>
<thead>
<tr>
<th>Approach</th>
<th>Warfighter Payoff</th>
</tr>
</thead>
</table>
| • Manufacture various candidates
• IM screening tests
• Down-select propellants
• Granulate verification lots
 • 500 pound lot each for evaluation in 120mm non-NG main charge propellant and for 30mm MK258
• Ballistic testing
• IM Testing | • Elimination of NG from propellant formulations will reduce propellant sensitivity to shock
• Reduced propellant sensitivity to bullet impact and fragment impact
• Reduced sensitivity will improve propellants response to slow cook-off |
Low Cost Common IM Explosives Program
PEO AMMO / PM-CAS

- Low Cost TNT IM Replacement
 - 11 candidates tested
 - 3 selected candidates showed significant IM improvements and are low cost
 - All Pass SD in current configuration without barrier
 - Team pursuing insertion into M795 production in FY09

- Low Cost COMP B IM Replacement
 - Program on-going
 - Test vehicle is 120mm mortar
 - Multiple candidates under testing

<table>
<thead>
<tr>
<th>155 mm M795</th>
<th>FCO</th>
<th>SCO</th>
<th>BI</th>
<th>FI</th>
<th>SD</th>
<th>SCJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TBD</td>
<td>IV</td>
<td>V</td>
<td>V</td>
<td>III</td>
<td>TBD</td>
</tr>
<tr>
<td>B</td>
<td>TBD</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>III</td>
<td>TBD</td>
</tr>
<tr>
<td>C</td>
<td>TBD</td>
<td>V</td>
<td>IV</td>
<td>V</td>
<td>III</td>
<td>TBD</td>
</tr>
<tr>
<td>TNT</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>I</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detonation / Partial Detonation</th>
<th>Detonation</th>
<th>Deflagration</th>
<th>Burn</th>
<th>No Sustained Reaction (Unofficial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I / II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
</tr>
</tbody>
</table>

Fragment Impact

SD
High Performance Computing Software Applications Portfolio Insensitive Munitions (IM) Modeling & Simulation (M&S)

- ARDEC leading a Tri-Service proposal with National Lab participation (LLNL, SNL, and LANL).
- Focused on improving the state of the art in DOE developed codes for modeling of bullet and fragment impact on rocket motors and confined energetic warheads.
- A 3 year effort that builds upon the previous CHSSI Multiphase Flow and Target response (MFT) effort and leverages numerous DoD/DOE programs such as prior Joint Munitions Planning (JMP) and Technical Coordination Group (TCG) efforts.

BI on Warheads

Fl on Rocket Motors
JIMTP Structure

TECHNICAL ADVISORY COMMITTEE (TAC)
Tony Melita, LW&M, Chairman

Joint IM Technology Program (IM D-Line)

Joint DoD/DOE Munitions Program (JMP) MOU

PEOs Responsible for IM Strategic Plans

Senior Level DOD Managers

DOE/NNSA/DP JMP TAC Co-chair: Bharat Agrawal and Senior Level DOE Managers

DoD IM IPT JSIMTP

JIMTP Manager – Pat Baker

OSD Manager – Matt Beyard

OSD JMP Technical Advisor
Paul Butler

Technology Coordinating Groups

Work Done by Govt Labs & Industry

MATG 1

MATG N

TCG 1

TCG XIV

Technology Coordinating Groups
Work Done by DOE Labs

- DoD Leads

Munition Area Technology Groups Work Done by Govt Labs & Industry

- DoD Leads
OSD D-Line IM Program
A Joint Service Collaboration & Partnership

IM Melt-Cast Explosives

- New IM Melt-Cast explosive compounds
- Synthesize compounds of interest and evaluate safety, toxicity, compatibility & performance at small scale

Measurement of Detonation Velocity

Mortar

155 mm Artillery
OSD D-Line IM Program
A Joint Service Collaboration & Partnership

Development of Halogenated Wax Binder Systems for High Power Explosives

• Press loaded explosive formulations competitive with or exceeding the performance of top explosives (e.g. LX-14), while gaining insensitivity sufficient to achieve IM requirements

• Chlorinated binder systems have shown improvement in IM properties and have helped maintain performance

• BI Test resulted in Type V Reaction - Burn
• LX-14 resulted in Type IV Reaction - Deflagration
High Energy / High Blast Explosives

- High Blast
 - PAX-3 transitioned to BDM and demonstrated in LOS-MP
 - Excellent IM Properties

- High Impulse
 - Several Thermobaric type formulations tested and characterized in coordination with ARL TBX test program and DTRA Test Program

- Combined Effects Explosives - High Energy/High Blast
 - PAX-30
 - PAX-42
Explosive Formulation Development

1987
- PAX-2, 80% HMX IM (25mm)
- PAX-2A, 85% HMX IM (M915, M982, MLRS – Grenade Submunitions)
- PAX-3, HMX/Alum. IM (PAM TC’ed FY99)
- PAX-11, 94% CL-20
- PAX-22, 92% CL-20
- PAX-23, (AX-1) Future Armor Tile for Abrams Tank Systems TC FY99
- PAX-24, TNT Replacement
- PAX-21, Comp B IM Replacement (60mm mortar)
- PAX-12, 90% CL-20 IM (PM SWMO, LSO Warheads)
- PAX-1, 94% CL-20
- PAX-AFX-196 (155MM M107, M795)
- PAX-28, Aluminized Cast (Unitary)
- PAX-31, Improved Comp B Repl (120mm Mortar)
- PAX-41 (SPIDER)

2000
- PAX-XX, (FCS MP-MRM, JCM)

2006
- PAX-2000
PAX 3 Tested in LOS-MP and BDM

- Warhead design and process
 - PAX 3 has excellent loading and machining characteristics
- Integrated PAX 3 warhead fired from M256 gun system at 30,000 g’s
- PAX 3 will not detonate as warhead passes through targets
- PAX 3 warhead performance on target meets exit criteria for LOS-MP ATO
- PAX 3 transitioned to BDM
Twin Screw Extrusion of PAX-3

IN-HOUSE Production Capability “A GO”
High Energy Coupled with High Blast
Increased Blast / Maintained Energy for Combined-Effects Warhead

<table>
<thead>
<tr>
<th>HE</th>
<th>Cost of Explosive Fill ($)/lb.</th>
<th>Metal Pushing/Unit Volume (Experimental)</th>
<th>Blast (Calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX-14 (HMX)</td>
<td>18</td>
<td>0 (Baseline)</td>
<td>0 (Baseline)</td>
</tr>
<tr>
<td>PAX-29c (CL-20)</td>
<td>600</td>
<td>17 %</td>
<td>43 %</td>
</tr>
<tr>
<td>PAX-29n (CL-20)</td>
<td>600</td>
<td>17 %</td>
<td>38 %</td>
</tr>
<tr>
<td>PAX-3 (HMX)</td>
<td>18</td>
<td>-28 %</td>
<td>32 %</td>
</tr>
<tr>
<td>PAX-30 (HMX)</td>
<td>18</td>
<td>6 %</td>
<td>30 %</td>
</tr>
<tr>
<td>PAX-42 (RDX)</td>
<td>7</td>
<td>3 %</td>
<td>24 %</td>
</tr>
</tbody>
</table>

- PAX-30 and PAX-42 maintain metal pushing energy of LX-14 but substantially exceed blast with 18.5% less explosive fill
- Excellent candidates for multi-purpose warhead!
- Excellent Reduced Shock Sensitivity
- Most cost effective
PAX-30 Provides both blast and high penetration

PAX-30 penetration ~10% better than current production with LX-14 in Javelin

‘Stonehenge’ Impulse Test Setup

PAX-30 vs. LX-14 Blast Output

PAX-30 blast outperformed LX-14 in the MRM configuration.
High Blast/Anti-Armor Warheads for Shoulder Fired Munitions

Reduced Solder Burden

CURRENT SOLUTION
1 ARMOR WEAPON
1 BUNKER WEAPON

ONGOING WORK
1 WEAPON FOR ARMOR,
& BUNKER TARGETS

Blast effect for bunker defeat

Jet penetration for armor defeat
Novel Energetic Materials ATO – Advanced Gun Propellants

High performance & insensitive propellants
- ETPE layered propellants
- BDNPN, NTO propellants
- High nitrogen propellants

Enhanced gun performance
- Tailorable burning rates
- Increased charge weight
- Increased energy density
- Controlled pressurization

Reduced barrel erosivity
- Reduced flame T
- Less erosive propellant combustion products

Reduced sensitivity/vulnerability
Synthesis Program Target Compounds

High Density High Energy Compounds

ATNI - Amino Trinitroimidazole
Cal. Density 1.92 g/cc
Performance 10% better than HMX and Insensitive due to hydrogen bonding

NATN – Nitramino Trinitroimidazole
Cal. Density 1.96 g/cc
Insensitive due to hydrogen bonding

Insensitive Melt-Cast Materials

DNP - Dinitropyrazole
Density 1.76 g/cc; Performance better than Comp.B Melt cast

MTNI - MethylTrinitroimidazole
Density, 1.79
Detonation velocity better than Comp. B, Melt cast and insensitive

High Energy High Nitrogen Compounds

TTIT - Tris(Trinitroimidazole) Triazine
Cal. Density 2.06 g/cc
Performance 20% better than HMX
Nano-materials / Nano-energetics

On-going Efforts

- Counter Measures
- Igniters
- Green LEI Primers
- Reactive Tungsten Penetrator
- Primers
- Illum Candles
- Dual Use Composites
- Formulation of New Reactive Materials
- Material Fab & Characterization
- MEMs S&A Designs
Production of Nano RDX by RESS

RESS Set-up

- Solvent: Carbon Dioxide
- Saturation P\T: 350 bar\85 °C
- Expansion Pressure: 1 – 60 bar

Current Process Capabilities

- Precise Particle Size Control: 100–500nm
- Production Capacity: 10-12 g/hour
- Continuous Operation: > 10 hours
- Contained Operation with Full Recycle of Solvent (CO₂)

Sensitivity Testing

Impact Test
150 nm RDX Pellet: H₅₀ – 41 cm
150 nm RDX Powder: H₅₀ - >100 cm
Holston C-5 RDX Powder: H₅₀ – 23 cm

Small Scale Gap Test
500 nm RDX in 88/12 wax formulation: Gap₅₀ - 32 kbar
4.8 micron RDX in 88/12 wax formulation: Gap₅₀ - 21 kbar
Nanocomposite Synthesis and Production

- Tunable super-thermites
- Multiple uses, safe to handle

Burn Rate of Various Materials

<table>
<thead>
<tr>
<th>Oxidizer Type</th>
<th>Burn Rate (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten Oxide Particles</td>
<td>51</td>
</tr>
<tr>
<td>Molybdenum Oxide Particles</td>
<td>140</td>
</tr>
<tr>
<td>Bismuth Oxide Particles</td>
<td>350</td>
</tr>
<tr>
<td>CuO Nanoparticles</td>
<td>700</td>
</tr>
<tr>
<td>CuO Nanorods</td>
<td>1500</td>
</tr>
<tr>
<td>CuO Nanorods w/ assembly</td>
<td>2200</td>
</tr>
<tr>
<td>CuO Nanowells</td>
<td>2300</td>
</tr>
</tbody>
</table>

Coated Nanoparticles

Patterned Energetics

Ordered Energetic Composites

Microencapsulation
Summary

- Army RDECOM-ARDEC Energetic Materials Program focused on meeting goals for transition to Army and Joint Service applications to meet Warfighter needs.
- Reactive materials demonstrated in demolition warheads and as IM liners.
- Actively developing IM Technology for PEO IM Priority Munitions with emphasis on M&S and Partnering in OSD IM S&T D-Line.
- High energy / High blast explosives demonstrated
- Novel Nanocrystalline and Nanocomposite Energetics applications being investigated.