Test and Evaluation of Electromagnetic Railguns

NDIA Gun & Missile Systems
April 23-26, 2007
EM Railgun – Game Changing

Above Sensible Atmosphere
Simplifies deconfliction

Ballistic Trajectory
500,000 ft
GPS guidance, navigation, & control

Hypervelocity Electromagnetic Launch
(MACH 7.5)

Hypervelocity Impact
(MACH 5.0)

Indirect Fire (200+ nm in 6 minutes)

Direct Fire (Horizon in 6 seconds)

- Long-Range
- Time-Critical
- Persistent
- All-Weather (24/7)
- No Unexploded Ordnance Issues

- Large Capacity Magazines
- No Propellants
- No Explosive Warheads
- Increased Ship Design Options
- Reduced Ship Vulnerability
- Leverages Navy Investment in Integrated Power System

Fixed and Relocatable Targets at Long Range

Support for Distributed Ops
How it Works

1. Switch closes, current flows through rails & armature

2. Magnetic field generated around rails as current flows through circuit

3. Magnetic field interacts with armature current generating a Lorentz force

4. Lorentz Force accelerates armature and projectile down barrel

Lorentz Force = \(1/2 \text{ Inductance Gradient (L')} \times \text{Current (I)^2}\)

or

Lorentz Force = \(\text{Current (J)} \times \text{Magnetic Field (B)}\)
Key Statistics (2007)
• Operating Muzzle Energy: up to 7 MJ
• Terminal Area: 16-MJ Slug
• Gun lines: 1

Terminal Catch: Up to 16-MJ Slugs

Temporary Control Vans
Current Facility
32-MJ PFN

- Controls Cabinets
- System Controller (Located in Control Van)
- Fiber Optic Cable
Switching and Output Cables

- Spark Gap Switch
- 350-MCM Coaxial Cable
SSG Construction

- Breech Studs
- Containment Studs
- Safety Shield (capable of stopping broken studs)
- Bore Insulators
- Upper Containment Plate (3 total)
- Side Containment Plate (8 total)
- Lower Containment Plate (3 total)
- Rail Backing Insulators
- Pre-Injector Tube
- Launch Package
- Rails
Launch Package

- Total Mass = 2.3-3.4 kg
- Aluminum Slug and Armature
- Nylon Bore Riders
- Design based on earlier work at Kirkcudbright and Greenfarm

Slide 9
Gun - Facility Interfaces

Muzzle Chamber
- 1" Thick A36 Steel Plate
- Bolts Directly to Gun Foundation
- Bolts Directly to Bridge Section
- Adaptable to Variety of Launchers

Recoil Plates
- 3" Thick A36 Steel Plate
- Bolt Directly to the Gun Foundation Plates
- Bolt Directly to Underside of SSG
Terminal Area Design

7 Each Bridge Sections
(8’ L x 16’ W x 10’ H x 10” Thick)
Free Standing, Reinforced Concrete, Flash X-Ray Cutouts

7 Each Sand-Filled Steel Boxes
(4’ x 4’ x 3’)
(21’ of Sand Along Line of Fire)

I-Beam Catch Cart
(8 mini-RR wheels, 12’ long)
Move/Replace first 4 Sand-Filled Steel Boxes

Terminal Pad
(100’ L x 32’ W)
Standard Gage Crane Rails, 3 Rows of Tie Downs every 8’, 2 Instrumentation Troughs

20 Each NRL Shield Blocks – Double Course
(8’ L x 2.5’ W x 1.5’ Thick)
Interlocking, Reinforced Concrete

Concrete Blocks
Statically Support last 3 Sand-Filled Steel Boxes

Shot Line
~75” Above the Ground
~66’ to 1st Sand Box

Steel Muzzle Chamber

~37 ft Opening

~24 ft

32 ft

~20 ft

~32 ft

~37 ft
Catch Component

- 7 Each Sand-Filled Steel Boxes, Total of 14 On Hand
 - 4 ft x 4 ft x 3 ft
 - Wt 5740 lbs when Filled
 - 21 ft of Sand along Line of Fire
 - Open Top, Stackable, 4-Way Forklift Entry

- I-Beam Catch Cart
 - Support the First 4 Sand Boxes to Allow Quick Movement & Replacement
 - Runs on Crane Rails Using Mini-Railroad Wheels

- Concrete Blocks
 - Support the Last 3 Sand Boxes
Shot 13 Breech Current and Muzzle Voltage
Muzzle Launch View

- Shot 7
- Muzzle Arc is 500K Amps at 2.3 KV
- 9 PSI Overpressure at 99” from muzzle
Flash X-ray Images

Static X-ray Image
Shot 2 X-ray Image
Shot 4 X-ray Image

Top View
Side View

All images are 3 feet from muzzle
In-Flight Images

Shot 8:

Shot 9:

Shot 10:

Shot 21:

Tue Jan 30 2007 16:00:09.355 793
Target Impact

Shot 1:

Shot 2:

Shot 10:
S&T Technology Challenges

• Launcher
 – Multi-shot barrel life
 – Barrel construction to contain rail repulsive forces
 – Scaling from 8MJ (state of the art) to 32MJ → 64MJ Muzzle Energy
 – Thermal management techniques

• Projectile
 – Gun launch survivability (45 kGee acceleration, Electromagnetic Interference Potential)
 – Hypersonic guided flight for accuracy
 – Lethality mechanics

• Pulsed Power System
 – Energy Density
 – Rep rate operation & thermal management
 – Switching
 – Torque management and multi-machine synchronization (rotating machine)
ONR I NP Phase I Program

<table>
<thead>
<tr>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Initiation Aug 05</td>
<td>Initial 8MJ Test Capability</td>
<td>Initial 32MJ Test Capability</td>
<td>Go – No Go Decision Point Aug 09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concept Design
- BAE
- General Atomics

Exercise Options
- A
- B
- C

Technology Development & Preliminary Design
- 32MJ Lab Gun For Bore Life Development
- 100MJ Capacitor Bank For Launcher Testing

Advanced Containment
- Advanced Containment
- EMLF Test Facility NSWCDD
- 32MJ Advanced Containment Demo

Rotating Machine Component Development
- Advanced Capacitor Development
- Integrated Launch Package (ILP) Development

Multiple Awards
- Boeing
- Draper

Executive Steering Committee Conclusion and Recommendation
- Go – No Go Decision Point Aug 09
Key Statistics (2009)
• Muzzle Operating Energy: 32 MJ
• Terminal Area: 64-MJ Projectile
• Gun lines: 2

Terminal Catch: Up to 16-MJ Slugs

100+ MJ Pulsed Power System

Protected Control Room

P306 FY09 MILCON ($9.9 M)

Gun Line #1

Gun Line #2

Ballistic Tunnel

Terminal Area: 64-MJ Projectiles

2009
Video of Test Results
ONR
Dr. Elizabeth D’Andrea (Program Manager)
Office of Naval Research (Code 352)
875 N. Randolph Street
Arlington, VA 22203
703.588.2962

NSWC

Mr. Charles Garnett (Program Manager)
Naval Surface Warfare Center, Dahlgren (Code 308)
6096 Tisdale Road
Dahlgren VA 22448-5156
540.653.3186

Mr. Tom Boucher, P.E. (EMLF Test Director)
Naval Surface Warfare Center, Dahlgren (Code 606)
18236 Thompson Road
Dahlgren VA 22448-5116
540.653.6273
Back-up
Power Ramp Up Testing Plan (2.4kg)

- Velocity – km/s
- Energy – MJ

Banks

10 KV
8.5 KV
3.5 MA@T=0

Graph showing velocity and energy against banks with different power levels.
Test Results

<table>
<thead>
<tr>
<th>Shot</th>
<th>Mass (KG)</th>
<th>Charge Voltage (KV)</th>
<th>Peak Current (MA)</th>
<th>Muzzle Velocity (m/s)</th>
<th>Muzzle Energy (MJ)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4</td>
<td>8.2</td>
<td>1.7</td>
<td>837</td>
<td>0.841</td>
<td>12.6</td>
</tr>
<tr>
<td>2</td>
<td>2.41</td>
<td>8.18</td>
<td>1.8</td>
<td>1117</td>
<td>1.5</td>
<td>16.9</td>
</tr>
<tr>
<td>3</td>
<td>2.416</td>
<td>7.85</td>
<td>2.35</td>
<td>1560</td>
<td>2.94</td>
<td>24.5</td>
</tr>
<tr>
<td>4</td>
<td>2.456</td>
<td>6.25</td>
<td>2.79</td>
<td>1540</td>
<td>2.91</td>
<td>28.3</td>
</tr>
<tr>
<td>5</td>
<td>2.456</td>
<td>6.85</td>
<td>2.83</td>
<td>1760</td>
<td>3.8</td>
<td>30.7</td>
</tr>
<tr>
<td>6</td>
<td>3.29</td>
<td>6.9</td>
<td>3</td>
<td>1500</td>
<td>3.7</td>
<td>29.4</td>
</tr>
<tr>
<td>7</td>
<td>3.29</td>
<td>7.68</td>
<td>3.13</td>
<td>1680</td>
<td>4.64</td>
<td>29.8</td>
</tr>
<tr>
<td>8</td>
<td>3.288</td>
<td>8.3</td>
<td>3.09</td>
<td>1850</td>
<td>5.63</td>
<td>30.9</td>
</tr>
<tr>
<td>9</td>
<td>3.29</td>
<td>8.6</td>
<td>3.1</td>
<td>1920</td>
<td>6.06</td>
<td>30.9</td>
</tr>
<tr>
<td>10</td>
<td>3.29</td>
<td>8.9</td>
<td>3.09</td>
<td>1990</td>
<td>6.51</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>3.288</td>
<td>9.2</td>
<td>3.1</td>
<td>2070</td>
<td>7.04</td>
<td>31.4</td>
</tr>
<tr>
<td>12</td>
<td>3.346</td>
<td>9.68</td>
<td>3.13</td>
<td>2117</td>
<td>7.5</td>
<td>30.2</td>
</tr>
<tr>
<td>13</td>
<td>3.2</td>
<td>9.65</td>
<td>3.09</td>
<td>2146</td>
<td>7.38</td>
<td>29.8</td>
</tr>
</tbody>
</table>
Test Results (continued)

<table>
<thead>
<tr>
<th>Shot</th>
<th>Mass (KG)</th>
<th>Charge Voltage (KV)</th>
<th>Peak Current (MA)</th>
<th>Muzzle Velocity (m/s)</th>
<th>Muzzle Energy (MJ)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2.46</td>
<td>8.2</td>
<td>1.87</td>
<td>1106</td>
<td>1.5</td>
<td>16.9</td>
</tr>
<tr>
<td>15</td>
<td>2.31</td>
<td>8.01</td>
<td>2.46</td>
<td>2005</td>
<td>4.65</td>
<td>27.4</td>
</tr>
<tr>
<td>16</td>
<td>2.89</td>
<td>8.89</td>
<td>2.75</td>
<td>2059</td>
<td>6.13</td>
<td>29.3</td>
</tr>
<tr>
<td>17</td>
<td>3.29</td>
<td>7.8</td>
<td>3.18</td>
<td>1722</td>
<td>4.87</td>
<td>30.3</td>
</tr>
<tr>
<td>18</td>
<td>3.29</td>
<td>7.8</td>
<td>3.18</td>
<td>1717</td>
<td>4.85</td>
<td>30.1</td>
</tr>
<tr>
<td>19</td>
<td>3.402</td>
<td>9.69</td>
<td>2.99</td>
<td>2053</td>
<td>7.17</td>
<td>28.9</td>
</tr>
<tr>
<td>20</td>
<td>2.892</td>
<td>8.9</td>
<td>2.75</td>
<td>2025</td>
<td>5.93</td>
<td>28.3</td>
</tr>
<tr>
<td>21</td>
<td>2.888</td>
<td>8.9</td>
<td>2.75</td>
<td>2019</td>
<td>5.88</td>
<td>28.1</td>
</tr>
<tr>
<td>22</td>
<td>2.89</td>
<td>8.9</td>
<td>2.73</td>
<td>2012</td>
<td>5.85</td>
<td>27.9</td>
</tr>
<tr>
<td>23</td>
<td>2.454</td>
<td>9.49</td>
<td>3.08</td>
<td>2519</td>
<td>7.79</td>
<td>32.7</td>
</tr>
</tbody>
</table>
Launch Package Results

Original Launch Package

Recovered from Shot 1

Recovered from Shot 2
Bore Life
EMLF Testing Concept

FY07

Series A (SSG)
20 Shots
Procure parts Test Analyze

Series B (SSG)
20 Shots
Procure parts Test Analyze

Series C (SSG)
20 Shots
Procure parts Test Analyze

Series D (LL32)
20 Shots
Procure parts Test Analyze

Series E (LL32)
20 Shots
Procure parts Test Analyze

FY08

8MJ Testing
18 months

2Q/3Q

Series U (LL32)
20 Shots
Procure parts Test Analyze

Series V (LL32)
20 Shots
Procure parts Test Analyze

Series W (LL32)
20 Shots
Procure parts Test Analyze

Series X (LL32)
20 Shots
Procure parts Test Analyze

FY09

16-32MJ Testing
18 months

2Q/3Q

FY10

Go No-Go

Order Core

FY11

100 Shot INP Demo
Potential 32 MJ Option

• 32MJ
• Half mass-full velocity (10kg, 2.5km/sec)
• Full mass-full current-2/3 velocity (20kg, 5.5MA, 1.7 km/sec)

INP DEMO - 32MJ
Test Analyze
100 Shot

SSG - Army Single Shot Gun
LL32 - 32MJ Lab Launcher

Contractor Tests on Gun-line #2

GA Adv Containment Launcher

BAE Stub Tube

Adv. Containment Launcher

BAE & GA

PDR

CDR

FAB

FY11

FY10

FY09

FY08

FY07

FY11

FY10

FY09

FY08

FY07

FY07

FY08

FY09

FY10

FY11

FY10

FY09

FY08

FY07

FY11

FY10

FY09

FY08
Navy Electromagnetic Railgun

What is it?
• Gun fired with electricity rather than gunpowder
• Revolutionary **250 mile range in 6 minutes**
• Mach 7 launch / Mach 5 hit
• Highly accurate, lethal GPS guided projectile
• Minimum collateral damage

Why is it important?
• Volume & Precision Fires
• Time Critical Strike
• All weather availability
• Variety of payload packages
• Scalable effects
• Deep Magazines
• Non explosive round/No gun propellant
 – Greatly simplified logistics
 – No IM (Insensitive Munitions)
• Missile ranges at bullet prices

Who needs it?
• Marines and Army troops on ground
• Special forces clandestine ops
• GWOT
• Suppress air defenses

When?
• Feasibility Demo 2011
• System Demo 2015
• IOC 2020-2025
Naval Railgun - Key Elements

- Launcher
- Projectile
- Pulse Forming Network (PFN)
- Ship Integration
- Capacitors or Rotating Machines
Key Parameters for Sizing a Naval EM Launcher

\[
\frac{1}{2} \times \text{Launch Mass} \times \text{Muzzle Velocity}^2
\]

\text{Desired Muzzle Energy}

\begin{align*}
\text{Current Profile} & \quad \text{Bore Size & Shape} \\
\{ - \text{Rail Separation Forces} \\
- \text{Transient Localized Heating} \} & \quad \{ \text{Launcher Efficiency} \} \\
\end{align*}

\begin{align*}
\text{Barrel Length} & \\
\{ - \text{Max Projectile Acceleration} \\
- \text{Bulk Rail Heating} \} & \\
\end{align*}
Risk Matrix Summary

Risk Ranking & Key Impacts

- **A** Launcher
 - Failure Impacts
 - Capability

- **P** Projectile
 - Failure Impacts
 - Volume, Weight & Cost

- **ER** Rotating Machine PPS

- **EC** Capacitor PPS

- **S** Ship Integration

Consequence of Failure, C_F

Probability of Failure, P_F
ONR I NP Phase 1 Objectives

- Traceability to 64MJ, 6-10 round / min indirect fire weapon system
- Bore Life
 - 32 Mega-Joule (Muzzle Energy) EM Lab Launcher
 - 10kg launch package; full muzzle velocity of 2.5km/sec
 - 20kg launch package with full current of ~5.5MA
 - Demonstrate more than 100 shot bore life
- Containment
 - 32 Mega-Joule Advanced Containment Launcher
 - 10kg launch package; full muzzle velocity of 2.5km/sec
 - 20kg launch package with full current of ~5.5MA
 - 1000+ round predicted containment structural barrel life
 - Design for thermal management at a rate of 6 round / min
 - Design launcher for minimal round dispersion
 - Transportable on pallets and/or in sea containers,
 - Consider marine environment
Integrated System Demo Strategy

INP I 2005-2011

- EM Lab Gun for Bore Life Development
- INP Phase I EM Railgun Demonstration Launcher
- Launcher Technology Dev.
- Projectile Trades & Concept Dev.
- Electromagnetic Test Facility

INP II 2011 - 2015

- INP Phase II EM Railgun Demonstration Launcher
- INP Phase II Long Range Integrated System Demo
- Endo-Exo Testing
- Mid-Range
- Terminal High Velocity Powder Gun
- Terminal Range
- Railgun ILP Tests
- ILP Interface in bore dynamics

INP Phase II EM Railgun Demonstration Launcher
Bore Life Consortium

- Spans Basic Research to Full-Scale Demo’s
- Parallel development paths via multiple research sites
- Avoids Duplication
- Efficient use of test resources

- Supports both Navy and Army EM Efforts
- Government purpose data rights to permit competition during the acquisition phase.

Coordinated Development!
Bore Life and Containment

<table>
<thead>
<tr>
<th>Phase</th>
<th>Phase of Project</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Conceptual Design Trade Studies</td>
<td>7 mos.</td>
</tr>
<tr>
<td>Army Add</td>
<td>Trade Studies for Army Application</td>
<td>3 mos.</td>
</tr>
<tr>
<td>Option I</td>
<td>Technology Development and Preliminary Design</td>
<td>30 mos.</td>
</tr>
<tr>
<td>Option II</td>
<td>Detailed Design, Fabrication and Demonstration</td>
<td>29 mos.</td>
</tr>
</tbody>
</table>

Lab Launcher - EMTF

- Greenfarm 32MJ PPS

Advanced Containment Launcher

32MJ Lab Launcher for Bore Life
Advanced Containment Launcher

<table>
<thead>
<tr>
<th>Phase</th>
<th>Phase of Project</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Conceptual Design Trade Studies</td>
<td>7 mos.</td>
</tr>
<tr>
<td>Army Add</td>
<td>Trade Studies for Army Application</td>
<td>3 mos.</td>
</tr>
<tr>
<td>Option I</td>
<td>Technology Development and Preliminary Design</td>
<td>30 mos.</td>
</tr>
<tr>
<td>Option II</td>
<td>Detailed Design, Fabrication and Demonstration</td>
<td>29 mos.</td>
</tr>
</tbody>
</table>

General Atomics Team
- General Atomics
- Boeing
- L3 Communications
- DRAPER Laboratory
- Jackson Engineering

Northrop Grumman Team
- Northrop Grumman
- ATK
- CEM

BAE Team
- BAE Systems
- SAIC
- EMD
Projectile Concept Trades

Description of Effort

- Develop long range projectile concept
 - Lethal
 - Consistent with Navy CONOPS
 - Compatible with any EML gun development
- Identify critical development
 - GN&C
 - Aerobody (drag and thermal protection)
 - Launched survivability
- Produce a development plan

The Boeing AASP Team

Draper Team
Advanced Pulsed Power

• Rotating Machine
 – Watch Army Effort (Demo in FY08)
 – Navy Specific Critical Component Development

• Advanced Capacitor
 – Increased Energy Density
 – Thermal Management for Multi Shot Operation
Steel Muzzle Chamber Component

- Steel Muzzle Chamber
 - Mates to both SSG & Lab Launcher
 - Bolts to 1st Concrete Bridge Section
- Collar Plates Seal Gaps between Launcher & Chamber

Holes to Allow Bolting to Threaded Inserts Cast Into Bridge Section (7/8"-9 Thread)

1"-8 UNC Grade 8 Bolts

1" A36 Steel Plate – Custom Made to Adapt to Each Launcher

1" A36 Steel Plate

8" x 6" x 1" Steel Angle

1st Precast Concrete Bridge Section
Vans on Van Pad

Overflow Van
VIP Van
Control Van
Storage Van

Pole with PTZ camera for Range Control