2007 NDIA
42nd Annual Armament Systems:
Gun and Missile Systems Symposium
23 – 26 April 2007

Capabilities of Penetrator with Enhanced Lateral Efficiency (PELE®)
Medium Caliber Cartridge vs. KE or HE Ammunition

Don Gloude, 20mm Design Engineer
ATK Medium Caliber Systems

Mark Weron, 20mm Program Engineer
Hill AFB
• Cartridge Concept Overview
• OT&E Ground-to Ground Test Plan
• Test Performance
• Conclusion
• Acknowledgements/Contacts
• Questions & Answers
PELE® Development History

2000 – 2001 Technology Transfer to 20 mm x 102 mm PELE® and Target Effect Evaluation specified by MoD

2002 German MoD decision for 27 mm x 145 mm PELE® FSD

2003 In-House Technical Evaluation of 20 mm x 102 mm PELE® by Diehl

2004 In-House Technical Evaluation of 27 mm x 145 mm PELE® by Diehl

2005 USAF Decision to select 20 mm x 102 mm PELE® for OT&E (Operational Test and Evaluation) as potential replacement for PGU-28/B

2006 OT&E testing began at Eglin AFB
Ammunition
20 mm x 102 mm
PELE®
20 mm PELE® Design Characteristics

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (max)</td>
<td>168 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>264 g</td>
</tr>
<tr>
<td>Projectile Mass</td>
<td>100 g</td>
</tr>
<tr>
<td>Muzzle Velocity</td>
<td>3410 f/s</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Average Mean Radius = 15 in. at 500 yds</td>
</tr>
<tr>
<td>Penetration</td>
<td>Ballistic limit < 2750 f/s against 0.375 in. (9.5mm) armor at 0°</td>
</tr>
<tr>
<td>Ballistics</td>
<td>Comparable to PGU 28A/B or PGU 27A/B</td>
</tr>
<tr>
<td>Design</td>
<td>Low drag version</td>
</tr>
</tbody>
</table>
Key Features of PELE® Cartridge

- Compatible with all 20mm M39A2, M61, M197, M621 and ATK Viper chain gun systems
- Inert Projectile has no Explosives or Fuze
- Multi-role Ammunition
 - Air-to-Air
 - Air-to-Ground
 - Ground-to-Ground
 - Ground-to-Air
- Enhanced Performance
 - Fragmentation (w/o HE)
 - Penetration (like SAPHEI)
 - Can be tailored to customer objectives
- Dual Purpose for Combat and Training
- Reduced Cost and Logistics
- High Reliability
Principles of PELE® Function

Projectile Body: High density material (steel or tungsten)

Inner Core: Low density material (plastic or aluminum)

Steel or tungsten penetrates the target

Plastic or aluminum does not penetrate the target

Simple Design ...
Principles of PELE® Function

- Density differences between inner core and projectile body
- Upon target impact, projectile body penetrates target; interior core does not penetrate
- Impact generates an extremely high pressure in the inner core causing the projectile body to fragment as it exits the target

... Yet Effective.
Fragmentation of PELE® Projectile

Target: 2 mm Al / 0° NATO
Impact Velocity: 750 m/s

Target: 2 mm Al / 80° NATO
Impact Velocity: 750 m/s

X-ray images of function
FIXED WING EQUIVALENT TARGET S1

2mm Al

1 2 3 4 5 6 7 8 9 10

20°

300 300 300 300 300 300 300 300 300 300

> 3000

- Function point - Projectile fragments
- Maximum fragmentation effect
- Nearly no fragments leave the target - all energy stays in the target
PELE® Performance vs Other Combat Ammo

PELE® Delivers More Energy in the Target Compared to Other Tactical Ammunition
PELE® Performance on Multi-Plate Array

<table>
<thead>
<tr>
<th>plate 1</th>
<th>plate 2</th>
<th>plate 3</th>
<th>plate 4</th>
<th>plate 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>plate 6</th>
<th>plate 7</th>
<th>plate 8</th>
<th>plate 9</th>
<th>plate 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fixed Wing Equivalent Target S1 – 2mm Al Spaced at 300mm

Few fragments leave the target – all the energy stays in the target.
PELE® able to penetrate 10 mm Rolled Homogeneous Armor (RHA)
Less than 0.5 mil difference out to 4000m range.
TARGETS

- Cessna Cardinal (light aircraft)
- F-16/C-130 Wing Sections
- F-16 Tail Section
- M577 Armored Personnel Carrier (APC)
- M577 APC Rear Hatch
- Light Utility Trucks

(each test set-up included dummies)

TEST SET-UP

- Air/ground (A/G) engagements converted to ground-to-ground (G/G) using PRODAS® software
- Ballistic trajectories simulated for both A/G and G/G engagements
- Impact velocities matched to position targets
Cessna Cardinal Test Set-up

| Target Set | 1 Cessna Cardinal
| | 1 Pilot / 1 Co-pilot
	2 Passengers
PRODAS Muzzle / Impact Velocity @ 1000 ft SR (ft/s)	3444.9 / 3169.23
PRODAS Ground-Ground Target Location (ft)	535
Cessna Cardinal Test Damage

09/28/2006

Entrance Hole

REAR

REAR
Cessna Cardinal Test Damage

ENGINE DAMAGE 09/28/2006

ENGINE DAMAGE 09/28/2006
F-16/C-130 Wing Section Test Set-up

| Target Set | 1 F-16 Wing w/ 1 dummy
	1 C-130 Wing w/ 2 dummies
PRODAS Muzzle / Impact Velocity @ 1000 ft SR (ft/s)	3444.9 / 3130.77
PRODAS Ground-Ground Target Location (ft)	610
F-16 Wing / ‘Troop’ Damage
C-130 Wing / ‘Troop’ Damage

Residual Fuel in Wing Foam Burning
F-16 Tail Section Test

<table>
<thead>
<tr>
<th>Target Set</th>
<th>1 F-16 Tail w/ 3 dummies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODAS Muzzle / Impact Velocity @ 1000 ft SR (ft/s)</td>
<td>3444.9 / 2978.13</td>
</tr>
<tr>
<td>PRODAS Ground-Ground Target Location (ft)</td>
<td>915</td>
</tr>
</tbody>
</table>

Significant damage to exit surface with composite skins.
F-16 Tail Section Test

Test Set-up

‘Troop’ Damage
M577 APC Test Set-ups

<table>
<thead>
<tr>
<th>Target Set</th>
<th>1 M577 APC w/ 5 passengers 6 dummies in hasty cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODAS Muzzle / Impact Velocity (ft/s)</td>
<td>3444.9 / 2808.94 2460.36</td>
</tr>
<tr>
<td>PRODAS Ground-Ground Target Location (ft)</td>
<td>1210 2000</td>
</tr>
</tbody>
</table>
20mm PELE® is effective against light armor.
M577 APC Test Damage

'Troop' damage inside APC

Penetrated 8” Reinforced CMU Wall

Did not penetrate APC at extended range (5000 ft) in all shots
M577 APC Rear Hatch Test

An advanced weapon and space systems company

<table>
<thead>
<tr>
<th>Projectile Type</th>
<th>Muzzle Velocity (ft/s)</th>
<th>Impact Velocity (ft/s)</th>
<th>Impact Range (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELE®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3388.406</td>
<td>2472.430</td>
<td>1966.881</td>
<td></td>
</tr>
<tr>
<td>3429.776</td>
<td>2505.556</td>
<td>1968.057</td>
<td></td>
</tr>
<tr>
<td>PGU-27A/B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3405.015</td>
<td>2432.786</td>
<td>1968.880</td>
<td></td>
</tr>
<tr>
<td>3402.988</td>
<td>2405.282</td>
<td>2021.135</td>
<td></td>
</tr>
<tr>
<td>3424.768</td>
<td>2347.559</td>
<td>2212.883</td>
<td></td>
</tr>
<tr>
<td>3412.408</td>
<td>2253.949</td>
<td>2359.837</td>
<td></td>
</tr>
<tr>
<td>3418.592</td>
<td>2435.984</td>
<td>1965.469</td>
<td></td>
</tr>
<tr>
<td>3415.898</td>
<td>2426.698</td>
<td>1972.231</td>
<td></td>
</tr>
</tbody>
</table>

PELE® penetrates vs PGU-27
Light Truck Test Set-ups

<table>
<thead>
<tr>
<th>Target Set</th>
<th>2 Light Utility trucks w/ passengers 6 dummies in hasty cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODAS Muzzle / Impact Velocity @ 1000 ft SR (ft/s)</td>
<td>3444.9 / 2460.36 1262.07</td>
</tr>
<tr>
<td>PRODAS Ground- Ground Target Location (ft)</td>
<td>2000 5000</td>
</tr>
</tbody>
</table>
Light Truck Test ‘Troop’ Damage

An advanced weapon and space systems company
Light Truck Test Damage

Fire in 5 gal. Diesel Fuel Can Hit by PELE®

Engine Damage
Test Summary

• All targets were incapacitated except the APC at 5000 ft ground-to-ground.

• PELE® ignited residual fuel in AC-130 wing foam and diesel fuel in 5-gallon fuel can.

• ‘The round met or exceeded performance projections.’ – Air Force assessor.

• Air Force down-selected to the PELE® round because Qualification Testing showed it to be as good or better than the PGU-28/B, especially if you factor in the life cycle cost savings.
20 mm x 102 mm PELE® cartridge offers:

- Combined HE and KE performance characteristics
- 100% safe – No reactive materials and no fuze
- High reliability and long shelf life
- Low cost – standard materials, simple manufacturing, short lead times
- “One round for all” – combat and training round (reduced logistic burden)
- Can be optimized for individual customer’s requirements
- Ready for service – ballistic match to PGU-27 and PGU-28/B, existing ignition system and no impact to aircraft operating systems (e.g. software) or handling equipment

PELE® is an ideal form-fit-function tactical solution.
Acknowledgements

• Diehl BGT Defence GmbH & Co.
• Mr. Mark Weron, Hill AFB
• Mr. Larry Douma, ATK Medium Caliber Systems
• Mr. Dan Delaney, ATK Medium Caliber Systems
• Mr. Duane Bjorlin, ATK Medium Caliber Systems
Contacts

Bob Schmitz (ATK 20mm Program Manager)
(763) 712-7724
Bob.schmitz@atk.com

Don Gloude (ATK 20mm Design Engineer)
(763) 712-7710
don.gloude@atk.com

Rodney Ward (ATK Medium Caliber Systems Business Development)
(480) 324-8608
Rodney.ward@atk.com

Mark Weron (Program Engineer - Hill AFB)
(801) 777-7803
Mark.Weron@Hill.af.mil