Waste Treatment Using Molten Salt Oxidation Technology

Tim Rivers
MSE Technology Applications, Inc.

15th Annual Global Demilitarization Symposium & Exhibition
Coauthors

- Dr. Solim Kwak, Majid Moosavi, John Wallace U.S. Army Defense Ammunition Center (DAC)
Program Sponsors

- Program Sponsor:
 - United States Defense Ammunition Center

- Contract Administered by:
 - Naval Surface Warfare Center-Crane
 - Contract Number, N00164-05-C-4721
Technology Background

- Molten salt oxidation (MSO) is a flameless oxidation process
- Operates at lower temperature than incineration
 - Approximately 800°C
- Eutectic salt mixture captures acid gas elements
 - Na$_2$CO$_3$ and K$_2$CO$_3$ mixture
Process Chemistry

- Described at previous Global Demilitarization Symposiums
- Contaminants of concern
 - Simple organics (explosive, contaminated carbon)
 - $2C_aH_b + (2a + b/2)O_2 \rightarrow 2aCO_2 + bH_2O$
 - Nitrogen-bearing organic wastes
 - $C_aH_bN_c + O_2 \rightarrow CO_2 + H_2O + N_2 + NO_x$
Project Background

- MSE was tasked to design and deliver prototype MSO system for energetic contaminated material and other waste streams at DEFAC facility in South Korea.
- Optimized prototype system uses background information developed from pilot-scale system runs at DAC and BGAD.
 - Pilot scale operation described in previous Demil Symposiaums
Process Design Basis

- Designed to treat secondary wastes resulting from operations at DEFAC facility in Korea
 - Explosive, contaminated, activated carbon
 - Water treatment plant deionization resins
 - Synthetic oils
 - Approximately 2.5 times larger feedrate than pilot-scale system
 - Feedrate of 240 to 250 ml/min
Large Scale Prototype System
Feed Preparation System

- Continuous batch feed preparation system
- Designed to grind feedstock to less than 100 mesh
- Sweco high energy mill
- Sweco vibratory screen
- Progressive cavity pumps to recirculate feedstock
- Explosion proof motors and controls
Grinding Mill Details

- Sweco Model 38L
- 2.5 Hp grinding motor
- Fiberglass lined grinding tub
- Ceramic cylindrical grinding media
Screen Separator Details

- Sweco ZS30 vibro energy separator
- 0.5 Hp motor
- 100 mesh separator screen
- PVC screen cleaning cylinders
Reactor System General Arrangement
Reactor Illustration

- 18 inch diameter reactor
- 120 inches high
- Single diameter throughout entire reactor length
- 19 resistance heaters
- Alloy 600 reactor body
- Downcomer assembly injects feedstock into bottom of salt mixture
Reactor Heating Elements

- 19 radiant heating elements
- Elements rated for 5000 watts per element
- Normal resistance of element is approximately 9 ohms
- Reactor operates in excess of 800°C
Reactor Side Heating Element

- Side elements rated for continuous operation at 1500°C
- Elements approximately 1.5 inches from reactor vessel
Feed Injection System

- Dual Peristaltic Pumps regulate flow of feed into reactor.
- One pump is in standby while one operated
Reactor Top

- Provides penetrations for reactor
 - Relief port
 - Offgas port
 - Salt removal port
 - Temperature measurement port
 - Downcomer port
Offgas System

- Offgas cooler
- Cools gas from approximately 750°C to 210°C
- Quick cooling of gas promotes salt re-condensation in salt trap
- Process lines heat traced to decrease heat-up time and keep offgas above dew point
Salt Trap

- Salt trap is designed to capture cooled salt particulate
Offgas Treatment System

- Baghouse
 - Automatic cleaning system
 - Insulated and heat-traced
- Bags are constructed of a combination of Teflon and fiberglass
 - Rated for 215°C continuous duty
 - Nine, 60 inch bags
Offgas Treatment System

- High Efficiency Particulate Filter
 - HEPA filter
 - Insulated
 - HEPA filter designed for 260°C continuous duty
 - Designed for 99.97% removal efficiency of particulate less than 0.3 micron
Offgas Treatment System

- Induced Draft Blower
 - Maintains system at negative pressure
 - Nominally maintained at –3 inches water column in reactor
 - 316 stainless steel internals
Offgas Treatment System

- **NOx reduction System**
 - Offgas is reheated to above 300°C in 30 kW reheater
 - CO catalyst treats carbon monoxide
 - Anhydrous ammonia is injected into system
 - NOx catalyst reacts with ammonia and forms nitrogen and water
Catalyst Internals

- CO catalysts are constructed of platinum doped ceramic
- NOX catalysts are constructed of titanium dioxide doped ceramic
- 400°C maximum operating temperature
Offgas Treatment System

- Continuous Emissions Monitor
 - Heated probe
 - Automatic calibration
 - Multi analyzer
 - CO, CO2, O2, NO, NO2, SO2, THC, Ammonia
Salt Evacuation System

- Draws a deep vacuum on storage vessel to remove salt from MSO reactor
- Remotely controlled from control room
Operation Summary

- Three demonstration test series have been run to define process parameters
- System ran approximately 120% of design basis using simulated feedstocks
- Approximately 150 hours of accumulated operation on the reactor and offgas system
- Starting 300 hour reliability and maintainability test series
Demonstration Test Summary

- Carbon Monoxide concentrations remained well below emission limits throughout test
- Reactor pressure maintained below atmospheric majority of test
Continuously Monitored Emissions

<table>
<thead>
<tr>
<th>Regulated Constituent</th>
<th>ROK Regulated Limit</th>
<th>Typical Operating Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>120 ppm *</td>
<td>20 – 30 ppm*</td>
</tr>
<tr>
<td>SOx</td>
<td>70 ppm*</td>
<td>5 – 15 ppm*</td>
</tr>
<tr>
<td>CO</td>
<td>200 ppm*</td>
<td>20 – 100 ppm*</td>
</tr>
<tr>
<td>Ammonia</td>
<td>100 ppm</td>
<td>5 – 25 ppm</td>
</tr>
</tbody>
</table>
Start-up Issues

- Salt carryover from reactor
- Salt is volatilized in reactor and re-condenses in offgas piping upstream of gas cooler
Start-up Issues

- Heater Failures
- Resistance heaters prematurely failed during start-up testing
- Larger diameter reactor requires higher duty cycle of heaters
- New heaters installed with higher duty cycle and temperature rating
DEFAC MSO Project Status

- Performing system RAM tasks through July
- Training DAC staff to operate the system
- Scheduling for installation in the DEFAC facility in FY08