Requalification of Demilitarized HMX for DOD/DOE Applications

A Joint Program Between:

NAVSEA
INDIAN HEAD
Surface Warfare Center Division

Los Alamos

TPL, INC.

NAVSEA
CRANE
Surface Warfare Center Division
Authors

Dan Burch, SAIC at NSWC Crane
Kerry Clark, NSWC Indian Head
Tiffany McGregor, NSWC Indian Head
Randal Johnson, TPL, Inc.
Why Requalify?

- Environmentally responsible
- DOD (Gansler memo of Dec. 00) endorses/promotes military reuse
- Available HMX resource
- Lower cost
- HMX is HMX
Based Around LX-14 Process

- TPL patented nitric acid degradation
- Subscale plant (150 - 200 lb / batch) operated at Ft. Wingate
- By-products recycled into blasting agent
HMX Recovery

TPL Contribution

- Prepared & provided classified HMX from LX-14.
- Processes established for demil of PBX-9501 and PBXN-110 and now for PNXN-3. Samples provided for analyses.
- Tested & established scale-up of classification.
- Provided larger samples of Class 1 and Class 5 LX-14 HMX for formulation testing to IH, LANL, and ATK.
- Scale up recovery processes for other explosives.
Current Status

- Shut down and moved sub-scale HMX facility from Ft. Wingate, NM into storage.
- New full scale prototype to be constructed at Letterkenny Munitions Center, Chambersburg, PA
- Available building chosen – permitting under investigation.
- Developing processing method for recovery of HMX from PBXN-3 (85% HMX, 15% nylon).
- Designing system to enable processing of PBXN-3, LX-14 (93% HMX, 7% estane) and other HMX containing PBX’s.
- Process design changes include:
 - Utilize indexing belt filter instead of centrifuge.
 - Recover majority of nitric acid for reuse instead of neutralization for blasting agent use.
 - In-situ NIR monitoring of HMX quality.
HMX Facility Design
HMX Facility Design
Future Plans

- Finalize PBXN-3 method and use for nylon byproduct.
- Modify building as necessary.
- Purchase and install equipment, mezzanine and containment.
- Prove-out new HMX recovery process facility (600 lbs/batch).
- Qualify new process for HMX recovery from PBXN-3.
- Supply HMX for testing purposes.
- Establish methods for other HMX-containing PBX formulations and scale up to full scale.
QUALIFICATION TESTING FOR PBXN-113 CONTAINING RECLAIMED HMX

Tiffany C. McGregor
Kerry A. Clark
Matthew Beyard
Karrie Sandagger

2007 Global Demilitarization Symposium

Naval Surface Warfare Center, Indian Head Division
Indian Head, MD 20640

Approved for public release; distribution is unlimited
Formulation & Processing

- Composition of PBXN-113:
 - 45% Class 5 HMX
 - 20% Binder Material
 - 35% Aluminum

- HMX recovered from LX-14
 - Indian Head milled Class 1 material to Class 5 specs

 - Two 5-gallon batches formulated and cast into test charges
 - Processing identical to PBXN-113 with virgin HMX

 - No anomalies in X-Rays of charges
Specification Aging Study

- Samples aged at 70°C for 6 months
- No significant changes in Mechanical Properties
EIDS Testing

- PBXN-113 with virgin HMX qualified as an Extremely Insensitive Detonating Substance (EIDS), NAVSEAINST 8020.8B UN Test Series 7.

- PBXN-113 formulated with R-HMX run side-by-side through entire series of tests.

EIDS Friability - Passed

EIDS Cap - Passed

EIDS Slow Cook-off – Passed

EIDS External Fire – Passed

EIDS Gap - Passed
Summary

- Comparison of recycled HMX to test results for virgin Holston HMX show few qualitative differences
- Replacement of virgin HMX with R-HMX did not cause any significant changes in sensitivity, performance, or aging characteristics in PBXN-113
Future Plans

- Shoulder-launched Multipurpose Assault Weapon – Novel Explosive (SMAW-NE)
 - Verify quality of R-HMX through specification testing
 - Currently having problem with acidity in larger batches.
 - Formulate R-HMX into PBXN-113
 - Limited qualification required
 - Already have extensive qualification testing of explosive
 - Compare to past PBXN-113 for validation
 - Load SMAW-NE hardware
 - IM testing
 - Penetration testing (Performance and Survivability)
 - Pursuing an agreement with USMC and Talley for future loads

- Use of low cost R-HMX would enable purchase of more SMAW-NE units
Acknowledgements

- Lori Nock and Dan Burch for their suggestions, technical guidance and program management
- The Chemical Analysis Laboratory and the Energetic Tests Development Division of the Energetics Evaluation Department of NSWC Indian Head Division
- Richard Noll and Letterkenny Munitions Center for supporting the installation of the prototype recovery facility at LEMC
- Defense Ammunition Center (DAC) and PM DEMIL for funding this effort