Progress on Recovery of Magnesium from Obsolete Pyrotechnic Flares

Stuart Nemiroff
Army Armaments Research, Development and Engineering Center
Picatinny Arsenal, NJ

Brent Ochs
Naval Surface Warfare Center, Crane Division
Crane, IN

Ralph Hayes
El Dorado Engineering, Inc., Salt Lake City, UT

Rick Snow
TPL, Inc., Albuquerque, NM

2007 Global Demilitarization Symposium and Exposition
14-17 May 2007
Reno, NV
Project Team

- **Joint Service Partners:**
 - U.S. Army RDECOM-ARDEC
 - U.S. Navy NSWC, Crane Division
 - U.S. Army Crane Army Ammunition Activity

- **Industrial Partners:**
 - TPL, Inc.
 - El Dorado Engineering, Inc.

- **Program Sponsors:**
 - U.S. Army Product Manager for Demilitarization
 - U.S. Army Defense Ammunition Center
Project Objectives

- Design, build, and operate a prototype process for the recovery of magnesium (Mg) from obsolete or unserviceable illuminating rounds
- Requalify and use recovered Mg in new munitions
Goals

- Reduce demil backlog of illuminating candles
 - Approximately 110,000

- Implement an R³ effort
 - 350,000 pounds of Mg for reuse or sale
 - 240,000 pounds of sodium nitrate (NaNO₃) by-product to sell instead of dispose
Benefits

- Lowers the cost of Mg to DoD customers
 - Estimated savings is up to $10 per pound of Mg
- Avoids incineration and potential environmental impact
- Eliminates single point failure in Mg supply
- Supports PM Demil’s R³ strategic goal
Under a Navy Phase 1 SBIR Project initiated in 1996, TPL developed a bench-scale process to recover Mg from illuminating flare compositions

- Used anhydrous ammonia to extract NaNO3 and binder

Process continued to evolve under Phase 2 SBIR, but problems persisted

- Working with ammonia at required temperatures and pressures
- Removal of flare composition from candle cases
Multi-service interest in recovered Mg fostered Army/Navy partnership in 2000 on Phase III SBIR project funded under Army Demil R&D Program

- Developed pilot-scale waterjet process to remove flare compositions from candle cases
- Switched from ammonia extraction to water extraction; there was no Mg loss to oxide as long as temperature was kept low and contact time was short
- All process steps demonstrated at the pilot-scale by TPL (Waterjet by NSWC)
- Data used to develop a conceptual design for a prototype process
- Recovered Mg successfully tested in M127 Hand Held Signal.
Results of Waterjet Washout Testing at NSWC-Crane

4.2-inch and 60-mm Illum Flares

1.25 min @ 33 kpsi
45 sec @ 38 kpsi
1.17 min @ 25 kpsi
Magnesium Recovered in TPL Pilot Plant

4.2 Magnesium after washout

4.2 Magnesium after 2 hours polishing
Current Program

- Under the continuing Phase III SBIR Project, a 3-stage effort has been undertaken:
 - Stage 1: Detailed design of the prototype process
 - Stage 2: Procurement, fabrication and shipment of prototype process equipment to CAAA
 - Stage 3: Installation, start-up, demonstration and validation

- El Dorado Engineering selected as the engineering contactor

- Process will transition to support demil workload in FY 09.
General Requirements for Prototype Process

- One or two ten-hour shifts per day
- Recover 300 lbs of specification grade Mg for each shift
- Capability to process candles from 14 types of munitions
 - 60-mm Mortars
 - 81-mm Mortars
 - 4.2” Mortars
 - 105-mm Projectiles
 - 155-mm Projectiles
 - 2.75” Rockets
 - Mk 45 Aircraft Flares
 - LUU 2B/B Aircraft Flares
- Safely handle any hydrogen generation as well as all waste streams
Current Status

- Building at CAAA has been selected
- Detailed design is complete
- Procurement and fabrication of prototype equipment is nearly completed
- Equipment arriving at CAAA
- Installation at CAAA targeted for Q1 of FY08
 - Delayed due to change in building location
Magnesium Recovery Prototype Plant

- The MRPP consists of all the required equipment to:
 - Remove illuminant from a wide variety of military flares
 - Separate & recover magnesium in a directly usable form
 - Separate & recover sodium nitrate for reuse
The MRPP equipment is sized to produce 300 lbs of Mg / shift

This requires a wide range of production rates

- 60 mm M83A3: 1,129 / shift
- 4.2 M335A2: 276 / shift
- 105 mm M314A2: 372 / shift
- 155 mm M118A2: 129 / shift
- LUU2: 26 / shift
Magnesium Recovery Prototype Plant Equipment Layout
Magnesium Recovery Prototype Plant
Candle Handling System
TPL CANDLE HANDLING SYSTEM AND ROTARY CHUCK

EL DORADO ENGINEERING, INC.
SALT LAKE CITY, UT

19 April 2006
Magnesium Recovery System Plant
Tubular Drag Conveyor

- Tubular Conveyor
- Crushing Nip
- Deluge Tank
- Polishing Column
- Collector Tank
- Settling Tank
Polishing Columns
Polishing Columns
MRPP Project Status

- Polishing Columns/Mixer Motors: Complete Shipped
- Settling Tank: Complete Shipped
- Tubular Conveyor: Complete Shipped
- Spray Booth: Complete
 - Items above assembled and mechanical fit up completed
- Preparation Area: In Production
- Candle Handling & Rotary chuck: Being Fabricated
<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Treatment System</td>
<td>Ordered</td>
</tr>
<tr>
<td>Waterjet Cutting</td>
<td></td>
</tr>
<tr>
<td>- Pumps</td>
<td>Ordered</td>
</tr>
<tr>
<td>- Chiller</td>
<td>Complete</td>
</tr>
<tr>
<td>Flexible Sidewall Conveyor</td>
<td>Ordered</td>
</tr>
<tr>
<td>Metal Separator</td>
<td>Ordered</td>
</tr>
<tr>
<td>Crushing Nip</td>
<td>Ordered</td>
</tr>
<tr>
<td>Deluge Tank</td>
<td>Complete</td>
</tr>
<tr>
<td>Final Rinse/dewater/classifier</td>
<td>Mostly Ordered</td>
</tr>
<tr>
<td>NaN03 Recovery</td>
<td>Mostly Ordered</td>
</tr>
<tr>
<td>Hydrogen System</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Mg can be recovered via water extraction and purified by agitation in water.

Optimization of the pilot plant has reduced cost to recover Mg.

Customer support has been obtained in both Army and Navy for reuse in illumination rounds, signals, trip flares, and tracers.

Prototype facility start-up is planned for CAAA in FY 08.

Implementation of this technology avoids incineration, implements R³ and provides the Services with cost-effective source of Mg that is no longer dependant on a sole source of supply.