DEPARTMENT OF DEFENSE
FUZE AND ENGINEERING STANDARDIZATION WORKING GROUP
QUALIFICATION GUIDELINES FOR FUZES AND IGNITION SAFETY DEVICES

51ST ANNUAL FUZE CONFERENCE
NASHVILLE, TN
22-24 MAY 2007

MILTON E. “GEOE” HENDERSON, JR.
ELECTRONICS ENGINEER

AVIATION AND MISSILE RESEARCH, DEVELOPMENT & ENGINEERING CENTER
REDSTONE ARSENAL, AL
(256) 842-9101
milton.henderson@us.army.mil

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED
• Widely varying qualification programs for fuzes and ignition safety devices (ISDs) continue to be proposed to the Tri-Service Safety Authorities
 – These proposed programs vary greatly in test basis, approach, population, applicability and success criteria

• Safety and test method standards, i.e. MIL-STD-1316, MIL-STD-1901, MIL-STD-331, do not directly address qualification
 – Appropriate modifications to these Standards in work
Fuze and ISD Qualification

Background

- Fuze and Engineering Standards Working Group (FESWG) undertook effort in 2004
 - Task lead is Mr. Gene Henderson, US Army AMRDEC (Redstone Arsenal)
- Plan is to standardize the minimum qualification requirements acceptable to Service Safety Authority (SSA) for Safe-Arm Devices and Ignition Safety Devices
 - Other tests and methods may be required by program
• Standardize quantities, tests, and test sequence that the Service Safety Authorities (SSA) find minimally acceptable for qualification.

• Applies to fuzes, safe and arm devices and ignition safety devices (ISDs)
 – Exclusions: nuclear weapons systems and trainers, flares and signals dispensed by hand-held devices and pyrotechnic countermeasure devices.

• These tests do not replace other required system level safety tests, i.e. MIL-STD-2105.

• Will be adopted by the FESWG.

• Will be accepted by:
 – Army Fuze Safety Review Board
 – Air Force Non-Nuclear Munitions Safety Board
 – Navy Weapon System Explosive Safety Review Board
• Sequential Environment ("Waterfall") Tests
 – two methods
 – representative of "life-cycle" exposure

• Miscellaneous Safety Tests
 – bare fuze
 – packaged fuze

• Performance Tests

• E3 Tests
Environmental Test Method I

- Environmental Tests conducted sequentially
- Options for inclusion of other environments as required by program
- Options for “diagnostic” testing of assets after specific environments (requires additional assets in test population).
- Baseline approach

Environmental Test Method II

- Same as method I except decreased duration of T&H and Extreme Temperature (storage) tests in sequential test flow.
- Full duration T&H and ET tests conducted outside of sequential test
- Decreased qualification test time
- Requires additional units
Fuze and ISD Qualification
Sequential Environment Tests

<table>
<thead>
<tr>
<th>METHOD I SEQUENTIAL ENVIRONMENT TESTS</th>
<th>METHOD II SEQUENTIAL ENVIRONMENT TESTS</th>
<th>METHOD II NON-SEQUENTIAL ENVIRONMENTAL TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bare Fuze) (n \geq 30)</td>
<td>(Bare Fuze) (n \geq 30)</td>
<td>(Bare Fuze) (n = 3-5)</td>
</tr>
<tr>
<td>Transportation Vibration</td>
<td>Transportation Vibration</td>
<td>Temperature and Humidity (28 days) 3 to 5 units</td>
</tr>
<tr>
<td>Temperature and Humidity (28 days)</td>
<td>Temperature and Humidity (14 days)</td>
<td>Extreme Temperature (Hot) (28 days) 3 to 5 units</td>
</tr>
<tr>
<td>Extreme Temperature Hot and Cold (28 days each)</td>
<td>Extreme Temperature Hot and Cold (14 days each)</td>
<td>Extreme Temperature (Cold) (28 days) 3 to 5 units</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>Thermal Shock</td>
<td></td>
</tr>
<tr>
<td>5-Foot Drop(^1)</td>
<td>5-Foot Drop(^1)</td>
<td></td>
</tr>
<tr>
<td>Tactical Vibration (Safe)(^1)</td>
<td>Tactical Vibration (Safe)(^1)</td>
<td></td>
</tr>
<tr>
<td>Tactical Vibration (Armed)</td>
<td>Tactical Vibration (Armed)</td>
<td></td>
</tr>
<tr>
<td>5-Foot Drop(^1,2)</td>
<td>5-Foot Drop(^1,2)</td>
<td></td>
</tr>
</tbody>
</table>

1. Navy requirement only. Not required as part of sequential flow by Army, Air Force.
2. Applicable to field installable fuzes only. Not required to be same units which were previously subjected to 5-foot drop.
Fuze and ISD Qualification
Sequential Environment Tests – Method I (Bare Fuze)

Notes:
1. Does not include other unique environments that may be required by the weapon system program, i.e., acoustics, altitude, rapid decompression, mechanical (launch, dispense, other), shock, salt fog, etc.
2. Sequential environmental testing should be representative of fuze/munition life cycle. Non-operating environments should occur prior to operating environments in test series.
3. Total number of test assets sequentially exposed to all environments should be no less than 30. More than 30 assets total may be required depending on program. Ambient temperature testing is not required. Test assets should be split between hot and cold test tracks.
4. No mechanical arming and re-safing, (clearing of potential/growing failure mode).
5. Temperature pre-conditioning of test units does not apply to T&H, Extreme Temp and Thermal Shock tests.
6. This test only required when applicable. For example, in general, this applies to missiles and rockets, but not necessarily mortars.
7. Navy requires tactical vibration testing on fuzes in both safe and arm modes.
8. Navy prefers 1.5m (5ft) drop testing be conducted between thermal shock and tactical vibration. 1.5m drop testing may also be applicable after tactical vibration for field-installed fuzes.
9. Dashed events are optional.

\[n_{\text{start}} = \text{total number of test units at beginning of test series} \]
\[n_{\text{final}} = n_{\text{final}} + \Sigma n_{\text{test units}} \]
\[n_{\text{final}} = \text{total number of units subject to all sequential environments at end of testing} \]
Fuze and ISD Qualification
Sequential Environment Tests – Method II (Bare Fuze)

TRANSPORTATION VIBRATION
MIL-STD-331C – Test B1.1

TEMPERATURE & HUMIDITY
MIL-STD-331C – Test C1 (modified)

EXTREME TEMPERATURE
MIL-STD-331C – Test C6 (modified)

THERMAL SHOCK
MIL-STD-331C – Test C7

TACTICAL VIBRATION
MIL-STD-331C – Test B3

\[n_{\text{start}} = \text{total number of test units at beginning of test series} \]
\[= n_{\text{final}} + \Sigma \text{test units} \]

\[n_{\text{final}} = \text{total number of units subject to all sequential environments at end of testing} \]

* See next page for notes and intermediate test steps
Notes:

1. Does not include other unique environments that may be required by the weapon system program, i.e., acoustics, altitude, rapid decompression, mechanical (launch, dispense, other), shock, salt fog, etc.

2. Sequential environmental testing should be representative of fuze/munition life cycle. Non-operating environments should occur prior to operating environments in test series.

3. Total number of test assets sequentially exposed to all environments should be no less than 30. More than 30 assets total may be required depending on program. Ambient temperature testing is not required. Test assets should be split between hot and cold test tracks.

4. No mechanical arming and re-safing, (clearing of potential/growing failure mode).

5. Temperature pre-conditioning of test units does not apply to T&H, Extreme Temp and Thermal Shock tests.

6. These tests can be of decreased duration (14 day duration each test, each test temperature).

7. This test only required when applicable. For example, in general, this applies to missiles and rockets, but not necessarily mortars.

8. Full 28-day duration tests.

9. Navy requires tactical vibration testing on fuzes in both safe and arm modes.

10. Navy prefers 1.5m (5ft) drop testing be conducted between thermal shock and tactical vibration. 1.5m drop testing may also be applicable after tactical vibration for field-installed fuzes.

11. Dashed events are optional.

12. Test quantities for these "parallel" test should be no less than three for each test.
• Bare & Packaged Miscellaneous Safety Tests
 – Includes destructive tests (e.g. Jolt, drop, explosive component tests)

• Performance Tests
 – e.g. Function and output tests, subverted safety tests

• E3 Tests
 – e.g. ESD, EMR, EMP
Fuze and ISD Qualification

Safety & Performance Tests

<table>
<thead>
<tr>
<th>BARE FUZE SAFETY TESTS</th>
<th>PACKAGED FUZE SAFETY TESTS</th>
<th>PERFORMANCE TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Explosive Component Safety/Out-of-Line</td>
<td>Transportation Handling</td>
<td>Progressive Arm</td>
</tr>
<tr>
<td>Jolt<sup>1</sup></td>
<td>Transportation Vibration</td>
<td>Brush Impact No-Fire<sup>4</sup></td>
</tr>
<tr>
<td>Jumble<sup>2</sup></td>
<td>40-Foot Drop</td>
<td>Extreme Temperature (Cold) (28 days) 3 to 5 units</td>
</tr>
<tr>
<td>Explosive Component Output</td>
<td>Subverted Jolt<sup>1,5</sup></td>
<td></td>
</tr>
<tr>
<td>5-Foot Drop<sup>3</sup></td>
<td>Subverted Jumble<sup>2,5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subverted 5-Foot Drop<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subverted 40-Foot Drop<sup>5,6</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arm, All-fire, No-Fire Tactical Performance</td>
<td></td>
</tr>
</tbody>
</table>

2. Not required by Navy. Not required by Army for in-line fuzes and ISDs. Air Force required for all fuzes and ISDs.
3. Navy requires 5-foot drop as part of environmental sequence.
4. Conducted as part of an assembly. May not be applicable for some weapons.
5. Test conducted on inert fuzes and ISDs. Adequacy of each lock must be tested/demonstrated individually.
6. Test will be proposed at next FESWG meeting (1-2 May).
Primary Explosive Component Safety/Out-of-Line
- MIL-STD-331C – Test D1

Jolt
- MIL-STD-331C – Test A1

Jumble
- MIL-STD-331C – Test A2.1

Explosive Component Output
- MIL-STD-331C – Test D4

1.5m (5 ft) Drop
- MIL-STD-331C – Test A4.1

Notes:
4. Navy prefers 1.5m (5ft) drop testing be conducted between thermal shock and tactical vibration. 1.5m drop testing may also be applicable after tactical vibration for field-installed fuzes.
Notes:
1. Test A5 meant to be conducted in conjunction with Trans Vib (B1.1). This test applies to fuzes packaged for Level A, maximum military protection, iaw AR 700-15.
2. Conducted on bare fuze or packaged configuration (warhead or inert-warhead assembly, cartridge, etc.).
Fuze and ISD Qualification
Performance Tests

Notes:
1. Subverted Drop, Jolt, Jumble tests not required for Army in-line fuze.
2. Subverted Safety tests should be conducted on inert fuze.
4. Progressive Arm test not applicable to zip/snap/non-progressive arm fuze unless used for purposes of gathering statistics for out-of-line safety.
5. Conducted typically as part of an assembly, i.e., round level.
6. Required only for anti-armor munitions or where deemed applicable otherwise.
Fuze and ISD Qualification
E3 Tests

Notes:
1. Fuzes shall be tested in all expected electrostatically-significant handling configurations, i.e., with and without caps, covers, protective devices, etc.
2. MIL-STD-464 refers to MIL-STD-2169 (classified) for EMP.
3. This test should be conducted only as applicable to program.
4. This testing is typically conducted at a system level. HESD testing at the bare fuze level may be required.
5. This test is optional.

<table>
<thead>
<tr>
<th>Category</th>
<th>Standard(s)</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel-Borne ESD¹</td>
<td>MIL-STD-331C – Test F1.1/2 → F1.2.1.1</td>
<td></td>
</tr>
<tr>
<td>Power Supply Transients (PST)</td>
<td>MIL-STD-1316, 1901 & 1911 → TBD</td>
<td></td>
</tr>
<tr>
<td>Helicopter-Borne ESD¹,⁴</td>
<td>MIL-STD-331C – Test F1.1/2 → F1.2.1.3</td>
<td></td>
</tr>
<tr>
<td>Lightning Effects (LE)</td>
<td>MIL-STD-1316, 1901 & 1911 → MIL-STD-464</td>
<td></td>
</tr>
<tr>
<td>Corona Discharge⁵</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

¹ E3 Tests
² MIL-STD-461
³ MIL-STD-1316, 1901 & 1911 → MIL-STD-464
⁴ MIL-STD-331C – Test F2.1
⁵ TBD
• Imposes SSA minimally acceptable requirements for qualification of fuzes and ISDs
 – Raises awareness of SSA expectations for fuze and ISD qualification

• Only part of a full qualification program

• Addresses differing Service requirements

• Guideline is in draft form
 – Approach has been approved by FESWG
 – “Briefing Chart” format finalized – released in draft form to many parties
 – Guidelines Document - draft
 – Industry comments will be solicited by FESWG