Multiple Launch Rocket System (MLRS) Fuzing Evolving to Meet End User Requirements

51st Annual NDIA Fuze Conference - May 23, 2007
Dave Grilliot & Cory Hatch

www.L-3com.com
Multiple Launch Rocket System (MLRS) Evolution

- Program History
- System Overview
- Rocket / Fuzing Development
- Conclusions
Evolutions in MLRS Rockets

1979
M26 MLRS

1992
M26A1 ER-MLRS

2001
M30 GMLRS DPICM

2004
XM30 GMLRS Unitary
Evolutions in MLRS Fuzing

1979
M445

1992
M451

2001
GMLRS DPICM ESAD

2004
GMLRS Unitary ESAF
MLRS History

- Army recognized need for a weapon for counterfire, air defense suppression, and light armor and personnel targeting
- Supplement available cannon weapons for delivery of a large volume of firepower in a very short time against critical, time-sensitive targets
- Dec 1975 - MICOM released a RFP to determine the best technical approach for the General Support Rocket System (GSRS)
- Mar 1979 - Vought launched first GSRS rocket out of its "six-pack" launch pod/container from a Self-Propelled Launcher Loader
- Nov 1979 - GSRS was redesignated MLRS
- Mar 1982 - Vought awarded concept definition contract to develop a binary chemical warhead (BCW) – XM135
- May 1982 - Vought Corporation delivered the first six M42 low-rate production rockets (one crated round)
- Feb 1983 - Production qual tests were completed at WSMR
- Nov 1984 - TGW development contract awarded
- Dec 1986 – XM29 SADARM submunitions development contract awarded
MLRS History (cont’d)

• FY 1989 - Development of German AT2 warhead program was completed
• Jul 1989 - Delivery of M270 launchers for Army TACMS missiles began
• Feb 1991 - 500th MLRS production launcher rolled out
• Feb 1991 - MLRS BCW (XM-135) program was cancelled.
• Feb 1991 - Alpha Battery, 21st FA launched first MLRS fired in combat
• Jul 1993 - Full-scale production of the MLRS basic rocket ended
• Dec 1993 - ER-MLRS development contract was signed
• FY 1994 - TGW program was terminated
• FY 1994 - SADARM program was terminated due to underfunding
• FY 1994 - Guided MLRS Advanced Technology Demonstration (ATD) initiated
• Oct 1994 - Germans fired first MLRS AT2 with live mines at WSMR
• FY 1996 - Bat-On-A-Rocket Demo Program designed to show that ATACMS/BAT submunition could be integrated into an MLRS rocket
• May 1996 - ER-MLRS program approved to enter LRIP
• May 1998 - First Guided MLRS flight conducted at WSMR
MLRS History (cont’d)

• 1999 - M30 GMLRS DPICM development started
• Jan 2003 - GMLRS SDD phase completed Production Qual Flight Testing
• Oct 2003 - Lockheed Martin was awarded an SDD contract for 86 Guided Unitary XM31 variant rockets
• 2003 - Lockheed Martin received GMLRS M30 LRIP contract
• 2004 - GMLRS M30 Operational Tests were completed
• Dec 2005 - M30 GMLRS full rate production contract awarded
• May 2005 - XM31 Guided Unitary delivered, following a US Army Urgent Need statement
• Aug 2005 - XM31 Guided Unitary variant began field testing in Iraq
• Q3/Q4 2005 - 498 XM31 rockets were delivered to the U.S. Army
• Sep 2005 - XM31 GMLRS Unitary fired for first time in combat operations by 3rd Battalion, 13th Field Artillery (3-13 FA), 214th Field Artillery Brigade
MLRS System Overview

• Highly mobile, automatic system that fires surface-to-surface rockets and missiles from M270 platform
• Co-produced by United States, Germany, United Kingdom, France, and Italy and fielded in 14 countries
• MLRS Family of Munitions (MFOM) includes three rockets and four missiles with an additional variants in development
• Upgraded in early 1990s to fire Army Tactical Missile System (ATACMS)
• Missions completed with crew of three and automated Fire Control System
• Can fire up to 12 MLRS rockets or 2 ATACMS in less than one minute
• MLRS employs the "shoot and scoot" principle to limit vulnerability to counterbattery fire
• More than 10,000 rockets and 32 ATACMS fired in combat during Desert Storm and was referred to as “steel rain”
MLRS System Overview

- Launcher
 - Fire Control System
 - Rocket Pod
- Rocket
 - Stabilizer Fins
 - Propulsion Section
 - Warhead Section
 - Fuze
 - Submunition / Warhead
M270 / M270A1 Launcher

- Derivative of the Bradley Fighting Vehicle (BFV)
- Accommodates the MLRS Family of Munitions including the Army Tactical Missile System (ATACMS)
- 12 rockets or 2 ATACMS missiles
- Capable of firing one at a time or in rapid ripples to ranges of more than 30 kilometers
- Can attain speeds reaching 65km/hr
- Can maneuver over most terrain
MLRS Rocket

- MFOM includes three rockets and four missiles with others in development
- 13 feet long and 9 inches in diameter
- Tube-launched, spin-stabilized, free-flight projectile
- Range is a function of launcher elevation
- Assembled, checked, and packaged in a dual-purpose launch-storage tube at the factory
MLRS Rocket – Major Components

- Four stabilizer fins
 - Located on aft end of the rocket
 - Provide in-flight stability by maintaining a counterclockwise spin
 - Initial spin is developed by spin rails on inner wall of the launch tube

- Propulsion section
 - Solid propellant rocket motor
 - Umbilical cable links the FCS to igniter in rocket nozzle
 - Motor ignited by electrical command from FCS

- Warhead section
 - Center core burster with submunitions or unitary warhead
 - Fuze – Electro-mechanical S&A, ESAD or ESAF
Warhead / Submunitions

- M77/M85 Dual Purpose Improved Conventional submunition (DPICM)
 - High explosive grenades detonates on impact
 - Case fragments produce antipersonnel effects
 - Can penetrate up to four inches of armor
- West German-developed AT2 scatterable mine warhead
- Brilliant Anti-armor Technology (BAT)
 - Precision engagement weapon
 - Integrates stand-off delivery accuracy with a submunition that can kill moving armor columns in the deep battle zone
- Unitary Warhead
 - 200 pounds of high explosive
 - Greatly reduces collateral damage
- Potential for delivering other warheads
Baseline M26 Rocket

- Dec 1975 - Started development
- Feb 1983 - Production qualification test program was successfully completed at WSMR
- Used for counterfire, air defense suppression, and targeting of light armor and personnel
- Free flight ballistic rocket
- Range limited to approximately 30km
- Function time set into fuze prior to launch
- Dispensed 644 M77 munitions over target area
- Used M445 remote settable fuze
M445 Fuze

- 1978 - Army Harry Diamond Labs (HDL) developed M587 Mortar Fuze
 - Interface Hybrid - Honeywell
 - Non-volatile Memory Timer – Nitron
 - 10 KHz RC Hybrid – Timex
- 1979 - KDI contracted to design, develop, and produce M445 Fuze
- 1982 - KDI completed development, production engineering, and qualification phases of the program
- 1983 - Started LRIP
- 1985 - High rate production started
- 10 years production – produced ~700,000 fuzes
M445 Fuze

- S&A assembly for mechanical arming
 - Contains unique gearless S&A - setback weight runs in zig-zag path (24 g’s) - used as first safety environment
- Fluidic generator
 - Environmentally-energized fluidic generator powered the electronics
 - Used as second safety environment
- Electronics design
 - Provided overhead safety for electrical arming
 - Remote settable function time: 4.0 – 199.99 seconds
 - Firing capacitor held shorted until 3.4 seconds before set function time
 - Used same 3 custom chips at the M587
 - Added PA fire circuit and power supply circuit
 - Piston actuator removes 2nd rotor lock after electronic delay based on fluidic generator frequency
- Explosive Output:
 - Lead: CH6, 760 mg
M26A1/A2 ER-MLRS (Extended Range)

• MLRS was outranged by a majority of foreign systems
• 1993 - LVS officially began the ER-MLRS EMD program
• Rocket motor modified to increase range from 30km to 45km
• Improved accuracy
• Targets include soft and light armored personnel and equipment
• Smaller warhead section with fewer submunitions
 • M26A1 - 518 M85 DPICM submunitions
 • M26A2 - 518 M77 DPICM submunitions
• New warhead fuze - XM451 remote settable fuze
• > 14,000 produced
M26A1/A2 ER-MLRS

REMOTE SETTABLE FUZE (XM451)

EXPLOSIVE CORE ASSEMBLY

POLYURETHANE FOAM SUPPORT

FUZE UMBILICAL ASSEMBLY

518 M85/M77 DUAL-PURPOSE GRENADES

274MM (10.8 in) LONGER ROCKET MOTOR ASSEMBLY MODIFIED MLRS SOLID PROPELLANT
XM451 Fuze

- 1993 - XM451 Fuze Development awarded to KDI
- Increased range and altitude required redesign of fluidic generator and low power electronics
- XM451 Electronics
 - Based on M445 and made compatible with existing setters
 - 3 custom chips replaced with custom Timer ASIC with built in clock and reset
 - Reduced current from 20mA to 1mA
- Fluidic Generator
 - High altitude reduced the airflow to fluidic generator
 - Nozzle body and reed relay redesigned to operate in a high altitude/low pressure environment
- S&A Device
 - Uses same version as M445, XM447, XM448 and TCS
- Safety Environments – Setback and Fluidic Generator
- 1996 - ER-MLRS entered LRIP
- > 16,000 Fuzes produced prior to ending in 2002
M30 Guided MLRS (DPICM)

• Began EMD in 1999
• Grew from need for increased range and accuracy
 • GPS aided inertial guidance package
 • Control actuation system
 • Spinning tail fins
 • Canards provide basic maneuverability
• Maximum range 60+ km
• Accuracy measured in meters
• Enhanced anti-jam capabilities
• Dispenses 404 M101 DPICM Submunitions
• Decreases number of rockets to defeat targets by as much as 80%
• New Fuze – GMLRS ESAD
M30 Guided MLRS (DPICM)

- ESAD
- Warhead
- Rocket Motor
- Spinning Tail Fins
- DPICM (404 M101 Grenades)
- Guidance Set & Control Actuation System
KDI ESAD / Technology Evolution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation ESAD</td>
<td>2nd Generation ESAD</td>
<td>3rd Generation ESAD</td>
</tr>
<tr>
<td>2500 Vdc</td>
<td>1600 Vdc</td>
<td>1250 Vdc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KDI EFI</th>
<th>LEEFI (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>Dual FPGA</td>
</tr>
<tr>
<td>MIL Spec thru Hole Components</td>
<td>SMT & COTS</td>
</tr>
</tbody>
</table>

Spark Gap Switch | N-Channel MCT

Hermetic

* = Currently in SDD
** = Began incorporating IPS in 2005

1991
1st KDI ESAD
ATACMS ESAD

1992
PATRIOT ESAD
Dual Redundant ESAD & FTSA

1993
Swiss Dragon ESAD

1994
Triple Tandem Outputs
Swiss TOW

1995
1st Air Force NNMSB Approved ESAD
1st Navy WSESRRB Approved ESAD
JSOW ESAD

1996
TSSAM ESAD W/RFU

1997
JSOW & ATACMS FTSA’s

1998
Separated Firing Module
EFOG-M ESAD

Updated: June 2006

1st KDI ESAD

Guided MLRS FTSA

1st KDI ESAD
Bomb Fuze

Tomahawk ESAF*

RAM ISD*

JASSM ESAF*

1st KDI ESAD

ESSM ESAD

Guided MLRS ESAD

AWS ESAF*

Guided MLRS Unitary ESAF*

FTSA

TCMD-ER

NLOS-LS ESAD*

1st KDI ESAD

AIM-9X ESAD

SDB ESAF

RAM ISD*

RAM ISD*

AIM-9X ESAD

ESSM ESAD

Guided MLRS Unitary ESAF*

FMU-139 PIP ESAF*

GMLRS ISD*

TACOMS ISD*

GMLRS ISD*

SDB ESAF

2001

2002

2003

2004

2005

2006

2007

Jan. 2000

2001

2002

2003

2004

2005

2006

Jan. 2007

Produced by L3 Communications
KDI Precision Products, Inc.

Page 23

An ISO 9001 Registered Company
M451 to GMLRS ESAD Evolution

Out-of-Line
MIL-SPEC components
Through Hole Parts
Sensitive Explosives

In-Line
Hermetic
COTS Components
SMT Technology
Insensitive Explosives
Guided MLRS (DPICM) ESAD

- Replace existing electro-mechanical fuze with In-Line Electronic Safe and Arm Device (ESAD)
- Design meets MIL-STD-1316D and STANAG 4187
- High voltage generation needed due to removal of mechanical interrupters
- Uses solid state high voltage switch (NMCT)
- External Low Energy EFI (LEEFI) used
- Safety environments – changed from setback and ram air to umbilical disconnect and acceleration
- Utilizes MEMS accelerometer
- First motion and safe separation verification
- Sequencing and acceleration for time
Guided MLRS (DPICM) ESAD

- Serial interface
 - Overhead safety timer can be programmed in launcher
 - Provides real time status of events
- Arm/fire command issued 200 ms prior to desired detonation point
- Dual Actel anti-fuse Field Programmable Gate Arrays (FPGAs) used to implement timing, sequencing and communications logic
- Surface mount COTS parts used
- Increased shelf life & reliability over mechanical system
 - No mechanical parts
 - Hermetically sealed housing
- Increased testability
 - NMCT switch allows unlimited number of test firings
 - Can be fully tested on bench to verify proper operation
- Qualified in 2002
- > 2200 Delivered to date
XM31 Guided MLRS Unitary

- October 2003 - Lockheed Martin awarded an SDD contract for 86 unitary variant rockets, to last until 2007
- Integrates a 200 pound unitary warhead
- Reduces collateral damage by providing a “one round, one kill capability”
- New Tri-mode fuze allows airburst, point impact and delay modes for penetrator capability
- May 2005 - First units delivered - accelerated following a US Army Urgent Need statement
- H2 2005 - First 498 rockets were delivered to the U.S. Army
- Aug 2005 - Unitary variant began field testing in Iraq
- Sep 2005 - First GMLRS unitary rockets fired in combat operations by 3rd Battalion, 13th Field Artillery (3-13 FA), 214th Field Artillery Brigade
- > 2100 Produced to date
- Today, GMLRS unitary is the Army’s only surface-fired, precision, longer range indirect fire munition available to troops in contact in an urban environment
- Affectionately referred to as the “70km sniper round”
GMLRS Unitary Rocket

- Spinning Tail Fins
- Rocket Motor
- Guidance Set
- ESAF
- Unitary Warhead
- Control Actuation System
- Rocket Battery
GMLRS Unitary ESAF

- Tri mode fuze functionality – proximity, impact, and impact with delay
- Design compatibility with MIL-STD-1316E and STANAG 4187
- GMLRS (DPICM) ESAD was baseline design
- Added internal impact switches
- Added external impact switch fire input
- Added proximity sensor interface
- Impact survivability
 - Survives high g longitudinal loads
 - Settable detonation delay time
 - Potting material & mechanical packaging
- Safety Environments – Umbilical disconnect and acceleration
GMLRS Unitary ESAF

• Proximity sensor interface
 • Provides +8V at 400mA for proximity sensor logic circuitry
 • Provides +5V at 500mA for proximity sensor transmitter circuitry
 • Interface circuitry for proximity fire input
• Fits 3” fuze well
• Serial Communications to set overhead safety time, detonation delay time, function mode, receive command arm/fire and provide status during test and flight
• Meets insensitive munitions (IM) requirements
• Qualified 2006
GMLRS Unitary

- Proximity Sensor Firing Mode
- Selectable 3M & 10M HOB
- Approach velocities near Mach 2.5

- Impact Survivability – ESAF tested against hardened concrete target
GMLRS Unitary
Conclusions

• MLRS program has evolved over the last 30 years
 • MLRS improvements have focused on upgrading launcher responsiveness and enhancing the range and precision of its munitions over the last 10+ years
 • Increased range – from 30km to 70km+
 • Improved lethality and reduced collateral damage by changing submunitions / warhead – DPICM, Unitary
 • Systems have adapted to evolving technology – GPS/INS, control systems, Fire Control, Fuzing improvements
• Program team always focused on delivering weapon to meet war fighters needs - “one round, one kill capability”