Turning Lists into Capabilities

Rich Engel
Maj Gen USAF (Ret.)
Deputy NIO for Science and Technology
National Intelligence Council
Overview

• The Challenge
• Bottom Line Up Front
• Definitions
• Process Initiatives
• Lists
 – CIA 2015
 – RAND 2020
 – STIC Emerging Technology Landscape
 – SRIC-BI Emerging Disruptive Civil Technologies
 – DNIO/ST
• Examples
• Lists to Capabilities
The Challenge
IC Perspective

<table>
<thead>
<tr>
<th>Why is it Crucial To Focus Intelligence > 15+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness of threat mitigation</td>
</tr>
<tr>
<td>Very Effective</td>
</tr>
<tr>
<td>Effective if lucky on intelligence</td>
</tr>
<tr>
<td>Ineffective/expensive</td>
</tr>
<tr>
<td>Risk of technical surprise</td>
</tr>
<tr>
<td>Low to medium</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td>Very High</td>
</tr>
<tr>
<td>Effectiveness of intelligence collections tools</td>
</tr>
<tr>
<td>Good for R&D direction</td>
</tr>
<tr>
<td>Low because development concealed and hard to collect against</td>
</tr>
<tr>
<td>Good for deployed system</td>
</tr>
<tr>
<td>Maturity of technology</td>
</tr>
<tr>
<td>Now to 5 years basic R&D, published work</td>
</tr>
<tr>
<td>5-15 years IOT&E, SAP, D&D, little to no OSINT</td>
</tr>
<tr>
<td>15 + Emerges as deploying system</td>
</tr>
</tbody>
</table>

Conclusion: Stay on the left side of the bathtub
“With so much technology in the world markets, the DoD has yet to organize and staff accordingly. The DoD does not know what it does not know and to date has yet to construct solutions or processes to overcome this important barrier. There are no systemic and enterprise-wide mechanisms to determine how global technologies can be used to enhance military capabilities or how these technologies can be used against the United States by potential adversaries.”
The Challenge: Pace of Technology

“Moore’s Law” Computing doubles every 18 months

“Fiber Law” Communication capacity doubles every 9 months

“Disk Law” Storage doubles every 12 months

Defense Acquisition Pace

F-22 Milestone I: Oct 86 IOC: Dec 05*

Comanche Milestone I: Jun 89 IOC: Sep 09

* Computers at IOC are 512 X faster, hold 65,000 X bits of information than they did at MS I

Technology growth is non-linear… Acquisition path has been linear
Bottom Line Up Front

- Ho: Capability is derived from
 - Knowledge
 - Imagination
 - Resources
 - Time

The greatest challenge is with “imagination.” What process can be used to apply imagination to the generated knowledge (lists)? What organization is responsible for imagination? How does “the system” deal with organizational threatening imagination?
Definitions

Emerging and/or Potentially Disruptive Technologies:

Discovery, development or exploitation of advanced technologies or combinations of advance technologies by foreign states or non-state actors that could threaten U.S. military forces or national security interests. The foreign technology base of adversaries and competitor nations. Science and technology plans, policies, programs, and facilities that could lead to emerging or disruptive technologies. Globalized trends in research in civilian advanced technologies. Development and/or application of technologies that could lead to asymmetric warfare threats to U.S. forces or critical U.S. infrastructure. Special focus on integration of information technology, biotechnology, materials science, and/or nanotechnology.
Definition of Disruptive Technology

The Textbook Definition

- Coined by Christensen* to describe a new, lower-performance (but cheaper) new product that can be improved more rapidly, so that performance outpaces the product it is replacing.

- Key concepts:
 - Greater performance than previous product
 - Replaces (drives) old product out of market

The Innovator’s Dilemma, 1997
Disruptive Technology
The Non-Textbook Definition

• Lower cost and lower initial performance does not matter

• What matters is rapid evolution from old, stable technology to new, dominating technology

• A technology surprise that gives a competitor an advantage
 – Business - Technology that overturns market
 – Military - Technology that causes a fundamental change in force structure, basing, and capability balance

• Disruptive Technologies can be intended or unintended - but both represent change

• Disruptive Technologies may arise from systems or enabling technology
Definitions
NIO/ST Perspective

Those emerging technologies and integration capabilities identified as most significant to advance or degrade US security broadly defined. Must cross the “major” threshold of interest – if not satisfactorily resolved would result in a noticeable but temporary degradation of US geopolitical, economic, military power or social cohesion.
Process Initiatives

• NIO/ST tasking to the Scientific and Technical Intelligence Committee
 – STIC Serves as NIPF Manager
• NIO/ST contract efforts with SRIC-BI and Institute for the Future
 – Targeted at Civil Technologies
• DIA Partnership with the National Academies
• DoD Service Intelligence Centers
 – Targeted at Military Technologies
• CIA Initiatives
 – Organizational and Partnerships with Businesses
• NSA – Institute for Analysis
Overall Process for Identifying and Monitoring Disruptive Technologies

Inputs
- Scan Signals of Change
- Explorer Viewpoints
- Disruptive Technology Alerts
- Technology Profiles
- Other Sources

Activities
- **Focus**
 - Semi-Annual Meeting to Select What to Watch and Study
- **Watch**
 - Disruptive Technologies being studied:
 - Potential Disruptive Technologies:
 - New Candidates:
- **Study**
 - Disruptive Technology Profile

Deliverables

NIC and SRIC-BI:
- Identified two potentially disruptive technologies to watch and study based on current SRIC-BI Explorer coverage
- Developed templates for the disruptive technology profile for the quarterly alerts to update changes in technologies being watched and studied
- Prepared a profile on human embryonic stem cells (HESC)
- Prepared two quarterly alerts on HESC (profiled technology) and ocean energy (watch technology)
Task 3: Disruptive Technology Workshop—Example Process Flow

Set Objectives

Problem Definition and Scope

Step 1: Generate Ideas
- Review
- Background information
- Trends in technologies/applications/services, etc
- NIC criteria (potential to be disruptive, strategic impact, etc.)
- Which should we examine further?

Step 2: Form Clusters
- Add timing, competitiveness, impact, required capabilities

Step 3: Describe Disruptions
- NIC criteria (potential to be disruptive, strategic impact, etc.)

Step 4: Screen Disruptions
- Disruptions to be profiled
- Potential disruptions are further analyzed after the workshop when creating profiles

Step 5: Select Most Critical

Step 6: Create Disruptive Technology Profiles
Process Initiatives

But in the end, by and large, the processes give you lists.

What do you do with the lists?
Integration Process
Notional Example

ID Key Strategic Technology → Nanotechnology

S&T: Assess current US capability → S&T: Project US capability 5, 10, 20 yrs

IPT: Obtain current and future difference in capability

Is difference a concern?

Yes → Determine plan of action

No → Don’t Know

Assess current rest of world → Project rest of world 5, 10, 20 yrs

Expand Collection Plan

Determine Collection Plan

IPR

Adjust Budget Programming

DDR&E Function | Intel Function | Intel & DDR&E Function

S&T: Project US capability 5, 10, 20 yrs

S&T: Assess current US capability

Current rest of world

Assess current rest of world
Global Technology Scenarios Through 2015: America’s Game to Lose
Views From a Panel of Experts (OTI IA 2001-083, November 2001)

Tier 1 – High Impact
- Gene Therapy
- Wireless Communications
- Image Understanding (Automatic Target Recognition)
- Cloned or Tailored Organisms
- MicroElectricalMechanical Systems (MEMS)
- Nanotechnology

Tier II – Enablers
- Optical Communications
- Regenerative Medicine
- Efficient Software Development
- Sensor Webs
- Advanced Materials
The Global Technology Revolution 2020

Implementation and Technology Feasibility:
Hybrid Vehicles
Rapid Bioassays
Rural Wireless Communications
Targeted Drug Delivers
Ubiquitous Information Access
Ubiquitous RFID tagging
Improved Diagnostic and Surgical Methods
Quantum Cryptography
Lists

STIC Emerging Technology Landscape

- Remote, Accelerated, Instant Learning
- Personalized (smart) Bioeffects and Bioweapons
- Tagging, Tracking & Locating Devices, Systems, Capabilities
- Cheap, Clean, Distributed Energy Sources and Energy Harvesting
- Understanding and modeling the brain
Lists

SRIC-BI 2025 Disruptive Civil Technologies

• Clean Coal
• Biofuels and bio-based Chemicals
• Biomedical Breakout
 – Healthspan and Lifespan Extension
• Energy Storage Materials
• The Internet of Things
• Personal Robots
• **Advanced Energy Techniques** (inexpensive solar energy systems, hybrid automobiles—particularly "series" hybrids)

• **Advanced Information Process and Management Capabilities** (widely available telephone and Internet connectivity—both wired and wireless, ubiquitous radio frequency identification (RFID) tagging of commercial products and individuals; pervasive sensors, wearable computers, quantum cryptography)

• **Advanced Medical Techniques** (rapid bioassays, targeted drug delivery therapies, tissue engineering, improved diagnostic and surgical methods)

• **Technologies to facilitate human sustainability and quality of life** (genetically modified (GM) crops, filters and catalysts, autonomous housing, green manufacturing processes)
Examples

What to do with a list?

• Turn it into a scenario
• Craft a credible path from today to:
 – Where we want to go, or
 – What we might face
• “Plausible” vs “Probable”
 – Driving forces
 – Technology maturation
 – Programmatics (dollars, commitment, resources, events)
 – Supporting Infrastructure
 – Cultural acceptance
Examples

Scenario 1 – Energy Markets Collapse

- Two technology breakthroughs occur in the near term (w/i ten years)
 - Energy Storage greatly improves
 - Bio-Fuels
- Bio Fuels allow the use of existing infrastructure – particularly diesel/jet fuel
 - Energy storage takes 85% of personal automobile travel off of petroleum fuel and onto the electrical grid
 - Long Haul Truck, Train, and Aviation migrate to biofuels
 - With government incentives, automobile infrastructure begins a radical transformation that takes 10 years to compete
- Petroleum based Energy Markets for transportation collapse
 - Regulation/social concern for environment preclude a return to petroleum fuel for transportation
Examples
Scenario II – Touch Labor Markets Collapse

- Two enabling technologies and market drivers create an unforeseen opportunity
 - Aging populations begin a wide spread use of “proxy-bots”
 - Next generation internet allows for real-time control of remote devices with video/tactical/audio feedback
- Touch labor goes on the net
 - Begins with service economy (security, cleaning, cooking)
 - Migrates to manufacturing
 - 24/7 facilities begin operation with the “labor” coming from sources all over the world
- Marginal cost of labor plummets and local labor markets collapse
Examples

Scenario III – Demographics go Non-Linear

• Biomedical breakthroughs transition medicine from “treating the disease” to “preventing human system degradation”
 – Widespread use of sensor to track body functions and provide very early indications of trouble
 – “Wal-Mart” Physicals (cheap, ubiquitous, high resolution)
 – Preventative medication targeted at food
• In developed countries, human productivity and lifespan significantly increase
• Governments and societies struggle with existing “retirement” and “social insurance” systems based on outdated demographics
Lists to Capabilities

Is this a profound idea or fortune telling?
Lists to Capabilities

Who provides the imagination?

• Intelligence Community
• Think Tanks / Science Boards
• Users
• Academics
• Developers
• Contractors
• Futurists
• Politicians
• Fortune Tellers

The Proverbial Integrated Product Team – aka, “all of the above”
“To summarize, a number of different types of execution agents, each with distinct core competences and cultures and governed by different rules sets and incentives, are required to meet conflicting demands: top-down versus bottom up, long development time versus quick response time, requirements-driven versus innovation-driven, DoD-specific technologies versus commercial technologies, and planned-for threat versus newly emerged threat.”
Lists to Capabilities

Some Suggestions

• This is a multi-discipline problem
 – Technical skills/knowledge
 – Programmatic sensitivity
 – Operational utility

• Scenario approach provides value added
 – Discipline
 – Can we really get there from here
 • Are the individual steps plausible

Intelligence Community Willing to Help!
Questions?

Carol, set up a meeting with the Technology Review Board to decide how we'll decide on new technologies.

Do you also need a meeting to decide how you will put together a meeting to decide how to decide things?

Maybe I should get some people together to help you answer that question.

Maybe.
Most Technology maturation follows S-curve:

Initial Discovery, “Product-ization”, then Incremental Improvement

During growth phase, a new technology can displace older, mature technology.
Changing Security Environment
- Four Challenges -

Irregular
- Unconventional methods adopted by non-state and state actors to counter stronger state opponents.
 - (e.g., terrorism, insurgency, civil war, and emerging concepts)

Catastrophic
- Acquisition, possession, and use of WMD or methods producing WMD-like effects against vulnerable, high-profile targets by terrorists and rogue states.
 - (e.g., homeland missile attack, proliferation from a state to a non-state actor, devastating WMD attack on ally)

Traditional
- Military capabilities and military forces in long-established, well-known forms of military competition and conflict.
 - (e.g., conventional air, sea, land forces, and nuclear forces of established nuclear powers)

Disruptive
- International competitors developing and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains.
 - (e.g., sensors, information, bio or cyber war, ultra miniaturization, space, directed-energy, etc)

Uncertainty is the defining characteristic of today’s strategic environment

Likelihood

Vulnerability

Lower

Higher
Shift to “Transformational Technologies”
Investment Priority Changes from PBR05 to PBR06

Irregular
- IED Mitigation Technology
- Non-Lethal Weapons
- Chem Bio Defense

Catastrophic
- Laser / Directed Energy
- Detection / Protection against WMD
- Network Defense...

Disruptive
- Hypersonic scramjet
- Fuel Cell / Energy and Power
- Nanotechnology
- Net Centric Warfare
- Autonomous Systems...

Understanding and modeling the brain