IEEE Life Cycle Standards and the CMMI®-Implementation Considerations

Dr. Peter Hantos
Senior Engineering Specialist
The Aerospace Corporation

Acknowledgements

This work would not have been possible without the following:

- **Reviewers**
 - Suellen Eslinger, Software Engineering Subdivision
 - Dr. Leslie J. Holloway, Software Acquisition and Process Department
 - Mary A. Rich, Software Engineering Subdivision

- **Sponsor**
 - Michael Zambrana, USAF Space and Missile Systems Center, Engineering & Architecture Directorate

- **Funding source**
 - Mission-Oriented Investigation and Experimentation (MOIE) Research Program (Software Acquisition Task)

- **Inspiration**
 - Dr. Barry Boehm, USC/CSSE
Agenda

• Presentation Objective
• Problem Statement
• The Organizational Context
• Developing Life Cycle Processes
• Organizational Standard Processes
• Life Cycle Models
• Process Mapping
• Implementation Pathways
• Conclusions
• Acronyms
• Bibliography
• Backup Slides
• Contact Information
Presentation Objective

Â Explore some common perceptions about the SEI CMMI® and the IEEE* Life Cycle Standards
 ❖ CMMI® can be leveraged for IEEE Standards
 ❖ IEEE Standards support CMMI®-based process improvement

Â Define a feasible approach for using the SEI CMMI® and the IEEE Life Cycle Standards together
 ❖ Key questions:
 >i How to exploit the synergy?
 >i How to resolve the differences?

Life Cycle Standards to be covered in this presentation will be referred as:

© CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University
* IEEE – Institute of Electrical and Electronic Engineers
Acquisition – Government Perspective

- Two key elements of successful acquisition of software-intensive systems
 - Selecting the right suppliers
 - Capability assessment of the potential suppliers is a key element of the acquisition process, and the current, widely embraced recommendation is the reliance on the CMMI® [SEI 2007]
 - Assuring mission success
 - Aerospace experience shows that mission success is achieved via the use of robust development standards* [Eslinger 2006].
 - Eslinger demonstrates that even the use of so-called “mature” processes, such as the CMMI® is inadequate, and the government must make a robust software standard contractually compliant
 - It seems that we need both the CMMI® and the IEEE standards

* Note that Eslinger’s development standard recommendation is based on IEEE 12207
- Supplier (Contractor) Perspective

- It seems that we need both the CMMI® and the IEEE standards…
 - CMMI®
 - It is the de-facto process improvement standard
 - IEEE Standards
 - The government is using them to define a framework for development planning and engineering
- Contractors’ main concerns
 - Finding the most effective/efficient ways to ensure dual compliance
 - Be pro-active and prepared for rapid tailoring of the standards
 - Simultaneously with compliance though, need to find out how to ensure agility and competitiveness from the development process’ perspective
 - Last but not least, to make a profit
(Light-hearted) Problem Statement

Â “We are from the SEI and the IEEE and we are here to help you”
--- Paraphrased use from Ronald Reagan

Â "Standards are always out of date. That's why we call them standards."
--- George F. Will
(More Serious) Problem Statement

Å Regarding “Help”, all the mentioned sources have noble goals; however, their objectives are different …

- **CMMI®**
 - The objective of CMMI® for development is to help contractors improve their development and maintenance processes for both products and services
 - *Based on [Chrissis 2007]*

- **IEEE Standards**
 - IEEE Standards’ objective is to eliminate misunderstandings between contractors and procurers
 - *Based on [IEEE 1997]*

- **ISO* Standards**
 - ISO Standards’ objective is to promote a free and fair global trading system via worldwide standardization
 - *Based on the ISO website [ISO 2007]*

* ISO – International Standards Organization. Note that the discussed key life cycle standards have their origin in ISO standards
The typical, current IEEE standard development process has some inherent characteristics:

- IEEE Standards are developed in isolation
 - Authors in most cases give lip-service only to other IEEE standards
 - The CMMI® has only minor, vague references to IEEE Life Cycle Standards
 - The IEEE Life Cycle Standards have only some vague references to process improvement (nothing specific regarding the CMMI®)

- IEEE Standards are developed by volunteers
- IEEE Standards' text is finalized and balloted via consensus

As a result, most standards share some common characteristics:

- The final material is always a result of major negotiations
- The process takes several years
- The standards are not consistent with each other
- Standards at most codify state-of-the-practice, and never reflect the state-of-the-art

The CMMI® has not been developed by the IEEE, but with respect to these problems it is not very different
Why Are These Problems?

Â The use of IEEE standards only makes sense for compliance

- Sure, they can be used as guidance materials by novices, but better, more up-to-date, and widely accessible materials are available for instructional purposes.

Â The CMMI® is also about compliance

- It is claimed that the model is for guidance, and only describes "what" type required characteristics for process improvement, without prescribing the "how." However,
 - Unconditional satisfaction of all goals is required on every maturity level.
 - In reality, during appraisals when the level of institutionalization is determined, the level of compliance with all the pre-defined organizational processes is probed.

It is really difficult to simultaneously satisfy so many conflicting compliance requirements.
Problems With IEEE Standards That Are Out Of Scope For This Presentation

- IEEE 1062
 - The use of 1062 is not recommended for government acquisitions
 - Various government entities have their own, strictly binding acquisition policies and instructions (e.g., the DOD 5000 series, NSSAP 03-01, etc.)
 - Acquirers are better off with directly using their respective policies
- IEEE life cycle standards have serious technical, compliance, and tailoring problems of their own
- IEEE life cycle standards are poorly harmonized with each other
 - There are some harmonization efforts in progress, but no tangible results yet
Array of Terminology Ambiguities

Unfortunately, IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, is so out-of-date that it is not even referenced anymore in the standards.

CMMI® 2007 – Peter Hantos
Organizational Context

Organizational terms and their hierarchy

<table>
<thead>
<tr>
<th>IEEE 15288</th>
<th>IEEE 12207</th>
<th>IEEE 1074</th>
<th>CMMI®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise</td>
<td>Organization</td>
<td>Organization</td>
<td>Organization</td>
</tr>
<tr>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
</tr>
</tbody>
</table>

Concerns:

- The organizational terms and their hierarchical relationship seem to be the same for the IEEE Standards and the CMMI® (IEEE 15288's Enterprise is the sole exception); however, the underlying definitions are different
 - E.g., the CMMI® definition of an organization is the most constrained

- All standards allow for recursive invocation of these terms
 - But they don't provide guidance on the details
Organizations and Projects

• “Project” across the IEEE Standards is not well defined
 - In 1074 the term is used to limit the standard’s scope
 - It only implies an endeavor in conjunction with software development and maintenance

• “Organization” in the IEEE Standards is also only vaguely defined
 - In general, it refers to the environment (people and facilities) where the projects are executed

• “Project” in the CMMI® refers to a managed set of interrelated resources delivering one or more products to a Customer*

• “Organization” in the CMMI® refers to an administrative structure where projects share a Senior Manager** and operate under the same policies

* “Customer”: The party accepting the product or authorizing payment
** “Senior Managers” focus on the long-term vitality of the organization rather than the short-term pressures of the projects.
Recommendation: Rely on the CMMI® Interpretations

- The first step is always to develop the WBS
 - There must be at least one product
- Next, map the WBS to contractor relationships
 - Where there is a Contract, there is a **Customer** and a **Supplier**
 - This will also help to determine what should be considered as **Projects**
 - For determining **Organizations**, use the existence or lack of Senior Managers (by CMMI® definition) to draw up the organizational boundaries for process development, maintenance, and improvement
- The WBS can also be used to determine which standard to use and where
 - 15288 for Systems Engineering projects
 - 12207 and 1074 for Software Engineering projects
- Discipline coverage
 - The CMMI® covers Hardware, Software, and Systems Engineering
 - IEEE process standards cover only Systems Engineering and Software
 - Note that there are no applicable, true hardware process standards (Hardware development processes are not Life Cycle Model-driven like Systems or Software Engineering processes)

Clear definition of Organizations is critical because both the IEEE Standards and the CMMI® are referring to so-called **Organizational Process Assets**
The process to develop a SW Project Life Cycle Process in IEEE 1074 and the process to develop a Defined Software Process in the CMMI® look similar*, but there are subtle, critical differences:

- IEEE 1074 only specifies Activity Description, Input Information, and Output Information for every Activity
- However, a defined process in the CMMI® must clearly state the following:
 - Purpose
 - Inputs
 - Entry criteria
 - Activities
 - Roles
 - Measures
 - Verification steps
 - Outputs
 - Exit criteria

* Note backup slides showing the details of both processes
** See [Chrissis 2007], page 152-154 for the distinctions between a managed and a defined process in the CMMI®
In terms of reliance on Organizational Standard Processes the CMMI® is stricter than the IEEE Standards

- IEEE 1074 does not mandate the use of any existing SPLCP (Software Project’s Life Cycle Process) during the creation of the current SPLCP (It doesn’t assume their existence)
 - In fact, the recommended Organizational Process Assets are more supporting than defining elements of the ſto be createdôSPLCP (e.g., policies, metrics, tools, methodologies, etc.)
- A CMMI® Defined Process must be tailored from the OSSP (Organizational Set of Standard Processes)

* Note backup slides showing how IEEE 1074 and the CMMI® are dealing with Organizational Standard Processes
It makes a difference on what CMMI® maturity level the organization is when the decision is made to comply with the IEEE Standards

- For a Level-2 organization it is not a problem
 - SPLCP created with the use of the IEEE Standards immediately satisfies the conditions for a Managed Process
 - Eventually these kind of processes could become part of OSSP

- For a Level-3 or higher maturity organization there is a conflict
 - Newly created, IEEE Standards-based processes can not be immediately applied because first they would have to be made part of OSSP
 - Also, appropriate tailoring guidelines would have to be developed and documented
 - The new processes can also affect (override) existing sub-process selection for quantitative management
 - The undesired side-effect is administrative delays and overhead
Life Cycle Models

- **Good News:**
 - There is no difference in how the IEEE Standards and the CMMI® treat Life Cycle Models

- **Bad News:**
 - The same 😊

- **Both expect the availability of a collection of life cycle models**
 - CMMI®
 - OPD (Organizational Process Definition) SP (Specific Practice) 1.2: Establish Life Cycle Model Descriptions
 - 1074
 - Clause 4.2.1 shows the existence of a collection of SPLCM’s, but it also declares that this collection is out of scope for the standard

- **Nevertheless, neither the CMMI® nor 1074**
 - Specifies where these models supposed to come from
 - Specifies how they should be documented
 - Provides guidance on tailoring

- **IEEE Standards do provide some guidance on selecting a life cycle model for a project, e.g., 12207 for software**
 - However, guidance is for a limited number of Life Cycle Models only
Process Mapping

- Mappings have been carried out on the CMMI® Process Area level*
 - CMMI® 15288 (Coverage = 68%)
 - CMMI® 12207 (Coverage = 72%)
 - CMMI® 1074 (Coverage = 59%)

- IEEE Standard support/leverage by CMMI® Process Area Category
 - Basic Process Management
 - Weak
 - Advanced Process Management
 - Missing due to lack of quantitative management focus
 - Basic Project Management
 - Well covered
 - Advanced Project Management
 - IEEE Standards do not provide robust enough support
 - Engineering
 - Well covered
 - Basic Support
 - Adequate coverage, except for Measurement & Analysis
 - Advanced Support
 - Partial coverage due to lack of quantitative management focus

* See detailed mapping at the end of the presentation in the Backup Slides section.
Definition of Coverage [%] = (22 - Σ“Not covered” / 22) * 100, where 22 is the total number of CMMI® Process Areas
Should the IEEE Standards be evaluated (mapped) on a lower, CMMI® practice/sub-practice, level?

- **No**, practices and sub-practices are not *required* model components
 - Practices are only *expected*
 - Sub-practices are only *informative*
- Process tailoring must be based on specific business goals and mission objectives
 - Equivalency/Adequacy of actual process steps must be assessed on a case-by-case basis
 - Early attempts for low-level evaluations in absence of specific business goals and objectives could be educational, but do not provide an effective/efficient solution
Implementation Pathways

- (1) Introducing IEEE Standards in a high maturity environment
 - The introduction of IEEE Standards-based processes is well facilitated by the robust process development, maintenance, and improvement infrastructure
 - As it was discussed, there is some ambiguity related to the CMMI® interpretation of a Defined Process, but mission success and the use of robust development standards should be the primary concern

- (2) Introducing CMMI® where IEEE Standards are the norm
 - IEEE Standards-based processes provide a good starting point
 - Pay attention though to the much stricter process documentation requirements of the CMMI®

- (3) Ideal situation would be simultaneous introduction
 - Use business and mission objectives as primary tailoring drivers
 - Pay attention to the CMMI® Context
Conclusions

IEEE Standards support CMMI®-based process improvement
- IEEE Standards can be helpful in creating both managed and defined CMMI® Process Assets
- However, be prepared that their practical application is time-consuming and requires effective tailoring
- Another caveat: IEEE Standards are weak and need special attention in the following four areas when introduced to support the implementation of CMMI®-based process improvement:
 - Definition of the process management infrastructure
 - Measurement & Analysis Process Area
 - Characterization of defined processes, due to
 - The need for more detailed documentation that provides greater insight into process activity relationships
 - More rigorous execution requirements
 - Process improvement focus
 - Quantitative Management

CMMI® can be leveraged for IEEE Standards
- Tailoring of IEEE Standards is more efficient if it is done with the understanding of CMMI® requirements and terminology
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMMI</td>
<td>Capability Maturity Model Integration</td>
</tr>
<tr>
<td>CMU</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off-The-Shelf</td>
</tr>
<tr>
<td>CSSE</td>
<td>Center for Software and Systems Engineering (at USC)</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Product Team</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>MOIE</td>
<td>Mission-Oriented Investigation and Experimentation</td>
</tr>
<tr>
<td>NSSAP</td>
<td>National Security Space Acquisition Policy</td>
</tr>
<tr>
<td>OPA</td>
<td>Organizational Process Assets</td>
</tr>
<tr>
<td>OPD</td>
<td>Organizational Process Definition (CMMI® Process Area)</td>
</tr>
<tr>
<td>OSSP</td>
<td>Organizational Set of Standard Processes</td>
</tr>
<tr>
<td>PDSP</td>
<td>Project’s Defined Software Process</td>
</tr>
<tr>
<td>PPBE</td>
<td>Planning, Programming, Budgeting, and Execution</td>
</tr>
<tr>
<td>SEI</td>
<td>Software Engineering Institute</td>
</tr>
<tr>
<td>SP</td>
<td>Specific Practice (of a CMMI® Process Area)</td>
</tr>
<tr>
<td>SPLC</td>
<td>SW Project’s Life Cycle</td>
</tr>
<tr>
<td>SPLCM</td>
<td>SW Project’s Life Cycle Model</td>
</tr>
<tr>
<td>SPLCP</td>
<td>SW Project’s Life Cycle Process</td>
</tr>
<tr>
<td>STD</td>
<td>Standard</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USC</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
</tbody>
</table>
Bibliography

System Life Cycle Processes

Â Enterprise Processes
- Enterprise Environment Management
- Investment Management
- System Life Cycle Process Management
- Resource Management
- Quality Management

Â Agreement Processes
- Acquisition and Supply

Â Project Processes
- Project Planning
- Project Assessment
- Project Control
- Decision Making
- Risk Management
- Configuration Management
- Information Management

Â Technical Processes
- Stakeholder Requirements Definition
- Requirements Analysis
- Architectural Design
- Implementation
- Integration
- Verification
- Transition
- Validation
- Operation
- Maintenance
- Disposal
12207 Software Life Cycle Processes

- **Primary Life Cycle Processes**
 - Acquisition
 - Supply
 - Development
 - Operation
 - Maintenance

- **Supporting Life Cycle Processes**
 - Documentation
 - Configuration Management
 - Quality Assurance
 - Verification
 - Validation
 - Joint Review
 - Audit
 - Problem Resolution

- **Organizational Life Cycle Processes**
 - Management
 - Infrastructure
 - Improvement
 - Training

1074 Software Activity Groups

- **Project Management**
 - Project Initiation
 - Project Planning
 - Project Monitoring and Control

- **Pre-Development**
 - Concept Exploration
 - System Allocation
 - Software Importation

- **Development**
 - Software Requirements
 - Design
 - Implementation

- **Post-Development**
 - Installation
 - Operation and Support
 - Maintenance
 - Retirement

- **Support**
 - Evaluation
 - Configuration Management
 - Documentation
 - Training
Creating a SW Project Life Cycle Process in 1074
How to Determine What “Organizations” and “Projects” Are

Mapping the WBS into the Organizational Structure
System WBS (Work Breakdown Structure)

Conceptual WBS

Space System Terms

LEGEND
- Software
- Hardware
- Activities

“Activities” in WBS jargon refer to the creation, integration, and management of the product elements on every level.
Contractor Structure

Example (Simplified) Space System Contractor Relationships

The product’s WBS and the contractor relationships together will determine the actual organizational structure (See next slide)
Example: Mapping the WBS Into an IPT-Based Organizational Structure

(Simplified) Space System IPT (Integrated Product Team) Structure

The challenge: What are the “organizations” and what are the “projects”?

- Prime/Government Sector
- Prime/Commercial Sector
- Sub/Division A
- Sub/Division B

Color Legend

- Ground Segment IPT
- Space Segment IPT
- Systems Engineering and Integration Team
- Program Level IPT
- Ground Element IPTs
- Ground Integration & Support
- Hardware IPTs
- Software IPTs
- Spacecraft IPT
- Payload IPT
- Space Integration & Support
- Processing Subsystem IPTs
- COTS only
- Processing Subsystem Integration & Support
- Hardware IPTs
- Software IPTs

CMMI® 2007 – Peter Hantos
Comparing the Role of Organizational Processes in IEEE 1074 and in the CMMI®
SW Project Life Cycle Process in 1074

Collection of SPLCMs

Select SW Project Life Cycle Model (SPLCM)

Map Activities into the SW Project’s Life Cycle Model (SPLC)

Create or Tailor SW Project’s Life Cycle Process (SPLCP)

1074 Activities

Existing SPLCPs (if any…)

Miscellaneous Organizational Process Assets (OPAs)

Allocated Software Requirements

SPLCM

SPLC

SPLCP
Developing a Defined Software Process in CMMI®

- Allocate System Requirements to Software
- Select Software Project Life Cycle Model (SPLCM)
- Develop Project's Defined SW Process (PDSP)
- Description of LCM's
- Tailoring Guidelines
- Library of Process Documentation
- Description of Organizational Set of Standard Processes (OSSP)
- Allocated SW Requirements
- SPLCM
- PDSP
Mapping CMMI® Process Areas to 15288 Processes

<table>
<thead>
<tr>
<th>CMMI® Process Areas</th>
<th>Related 15288 Life Cycle Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Process Definition</td>
<td>System Life Cycle Process Management</td>
</tr>
<tr>
<td>Organizational Process Focus</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Training</td>
<td>Not covered</td>
</tr>
<tr>
<td>Advanced Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Process Performance</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Innovation & Deployment</td>
<td>Not covered</td>
</tr>
<tr>
<td>Basic Project Management</td>
<td></td>
</tr>
<tr>
<td>Project Planning</td>
<td>Project Planning</td>
</tr>
<tr>
<td>Project Monitoring & Control</td>
<td>Project Control</td>
</tr>
<tr>
<td>Supplier Agreement Management</td>
<td>Acquisition and Supply</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td></td>
</tr>
<tr>
<td>Integrated Project Management</td>
<td>Enterprise Environment Management</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Risk Management</td>
</tr>
<tr>
<td>Quantitative Project Management</td>
<td>Not covered</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Requirements Development</td>
<td>Stakeholder Requirements Definition, Requirements Analysis</td>
</tr>
<tr>
<td>Requirements Management</td>
<td></td>
</tr>
<tr>
<td>Product Integration</td>
<td>Integration</td>
</tr>
<tr>
<td>Technical Solution</td>
<td>Architectural Design, Implementation</td>
</tr>
<tr>
<td>Verification</td>
<td>Verification</td>
</tr>
<tr>
<td>Validation</td>
<td>Validation</td>
</tr>
<tr>
<td>Basic Support</td>
<td></td>
</tr>
<tr>
<td>Configuration Management</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>Measurement and Analysis</td>
<td>Not covered</td>
</tr>
<tr>
<td>Process and Product Quality Assurance</td>
<td>Quality Management</td>
</tr>
<tr>
<td>Advanced Support</td>
<td></td>
</tr>
<tr>
<td>Decision Analysis and Resolution</td>
<td>Decision Making</td>
</tr>
<tr>
<td>Causal Analysis and Resolution</td>
<td>Not covered</td>
</tr>
</tbody>
</table>
Mapping CMMI® Process Areas to 12207 Processes

<table>
<thead>
<tr>
<th>CMMI® Process Areas</th>
<th>Related 12207 Life Cycle Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Process Definition</td>
<td>Improvement, Infrastructure</td>
</tr>
<tr>
<td>Organizational Process Focus</td>
<td>Improvement</td>
</tr>
<tr>
<td>Organizational Training</td>
<td>Training</td>
</tr>
<tr>
<td>Advanced Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Process Performance</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Innovation & Deployment</td>
<td>Not covered</td>
</tr>
<tr>
<td>Basic Project Management</td>
<td></td>
</tr>
<tr>
<td>Project Planning</td>
<td>Management</td>
</tr>
<tr>
<td>Project Monitoring & Control</td>
<td>Management</td>
</tr>
<tr>
<td>Supplier Agreement Management</td>
<td>Acquisition</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td></td>
</tr>
<tr>
<td>Integrated Project Management</td>
<td>Management</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Management</td>
</tr>
<tr>
<td>Quantitative Project Management</td>
<td>Not covered</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Requirements Development</td>
<td>Development</td>
</tr>
<tr>
<td>Requirements Management</td>
<td>Development</td>
</tr>
<tr>
<td>Product Integration</td>
<td>Development</td>
</tr>
<tr>
<td>Technical Solution</td>
<td>Development</td>
</tr>
<tr>
<td>Verification</td>
<td>Verification</td>
</tr>
<tr>
<td>Validation</td>
<td>Validation</td>
</tr>
<tr>
<td>Basic Support</td>
<td></td>
</tr>
<tr>
<td>Configuration Management</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>Measurement and Analysis</td>
<td>Not covered</td>
</tr>
<tr>
<td>Process and Product Quality Assurance</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Advanced Support</td>
<td></td>
</tr>
<tr>
<td>Decision Analysis and Resolution</td>
<td>Not covered</td>
</tr>
<tr>
<td>Causal Analysis and Resolution</td>
<td>Not covered</td>
</tr>
</tbody>
</table>
Process Areas to 1074 Activity Groups

<table>
<thead>
<tr>
<th>CMMI® Process Areas</th>
<th>Related 1074 Activity Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Process Definition</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Process Focus</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Training</td>
<td>Not covered</td>
</tr>
<tr>
<td>Advanced Process Management</td>
<td></td>
</tr>
<tr>
<td>Organizational Innovation & Deployment</td>
<td>Not covered</td>
</tr>
<tr>
<td>Organizational Process Performance</td>
<td>Not covered</td>
</tr>
<tr>
<td>Basic Project Management</td>
<td></td>
</tr>
<tr>
<td>Project Planning</td>
<td>Project Planning</td>
</tr>
<tr>
<td>Project Monitoring & Control</td>
<td>Project Monitoring & Control</td>
</tr>
<tr>
<td>Supplier Agreement Management</td>
<td>Not covered</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td></td>
</tr>
<tr>
<td>Integrated Project Management</td>
<td>Not covered</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Project Monitoring & Control</td>
</tr>
<tr>
<td>Quantitative Project Management</td>
<td>Not covered</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Requirements Development</td>
<td>Software Requirements</td>
</tr>
<tr>
<td>Requirements Management</td>
<td>Software Requirements</td>
</tr>
<tr>
<td>Product Integration</td>
<td>Implementation</td>
</tr>
<tr>
<td>Technical Solution</td>
<td>Design</td>
</tr>
<tr>
<td>Verification</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Validation</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Basic Support</td>
<td></td>
</tr>
<tr>
<td>Configuration Management</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>Measurement and Analysis</td>
<td>Project Planning</td>
</tr>
<tr>
<td>Process and Product Quality Assurance</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Advanced Support</td>
<td></td>
</tr>
<tr>
<td>Decision Analysis and Resolution</td>
<td>Software Importation</td>
</tr>
<tr>
<td>Causal Analysis and Resolution</td>
<td>Not covered</td>
</tr>
</tbody>
</table>
Contact Information

Peter Hantos
The Aerospace Corporation
P.O. Box 92957-M1/112
Los Angeles, CA 90009-2957
Phone: (310) 336-1802
Email: peter.hantos@aero.org
All trademarks, service marks, and trade names are the property of their respective owners