How To Measurably Improve Your Requirements

NDIA CMMI Conference
November 2007

Timothy G. Olson, President
Lean Solutions Institute, Inc.
(760) 804-1405
Tim.Olson@lsi-inc.com
wwwlsi-inc.com

Objectives

Describe some requirements problems from industry.

Present a useful classification of requirements problems.

Describe some practical strategies and best practices that organizations have used to successfully develop, manage, and improve their requirements in a measurable way.

Provide real examples that address requirements problems.

Answer any of your questions.
Outline

Why Focus on Requirements?

A Practical Requirements Classification

CMMI® Requirements Overview

Practical Approaches for Requirements

Requirement Examples

Some Advanced Approaches

Summary

Why Focus on Requirements?

The hardest single part of building a system is deciding what to build...
No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later.

Adapted from Fredrick Brooks, Jar. [Brooks 87]
Why Focus on Requirements?

A research report from the Standish Group highlighted the continuing quality and delivery problems in our industry and identified three leading causes:

- Lack of user input
- Incomplete requirements and specifications
- Changing requirement specifications

Outline

Why Focus on Requirements?

A Practical Requirements Classification

CMMI Requirements Overview

Practical Approaches for Requirements

Requirement Examples

Some Advanced Approaches

Summary
Problems with Requirements

According to the SEI [Christel 92], problems of requirements elicitation can be grouped into 3 categories:

1. **Problems of Scope**: the requirements may address too little or too much information.

2. **Problems of Understanding**: problems within groups as well as between groups such as users and developers.

3. **Problems of Volatility**: the changing nature of requirements.

Scope and Volatility

The list of 10 requirements elicitation problems given in [McDermid 89] can be classified according to the 3 categories in [Christel 92]:

Problems of Scope
- The boundary of the system is ill-defined
- Unnecessary design information may be given

Problems of Volatility
- Requirements evolve over time
Problems of Understanding

• Users have incomplete understanding of their needs
• Users have poor understanding of computer capabilities and limitations
• Analysts have poor knowledge of problem domain
• User and analyst speak different languages
• Ease of omitting “obvious” information
• Conflicting views of different users
• Requirements are often vague and untestable, e.g., “user friendly” and “robust”

Outline

Why Focus on Requirements?

A Practical Requirements Classification

CMMI Requirements Overview

Practical Approaches for Requirements

Requirement Examples

Some Advanced Approaches

Summary
Requirements Management (REQM)

SG 1: Manage Requirements:

 SP 1.1-1: Obtain an Understanding of the Requirements
 SP 1.2-2: Obtain Commitment to Requirements
 SP 1.3-1: Manage Requirements Changes
 SP 1.4-2: Maintain Bidirectional Traceability of Requirements
 SP 1.5-1: Identify Inconsistencies between Project Work and Requirements

Requirements Development (RD)

SG 1: Develop Customer Requirements:

 SP 1.1-1: Collect Stakeholder Needs
 SP 1.1-2: Elicit Needs
 SP 1.2-1: Develop the Customer Requirements

SG 2: Develop Product Requirements:

 SP 2.1-1: Establish Product and Product-Component Requirements
 SP 2.2-1: Allocate Product-Component Requirements
 SP 2.3-1: Identify Interface Requirements

SG 3: Analyze and Verify Requirements:

 SP 3.1-1: Establish Operational Concepts and Scenarios
 SP 3.2-1: Establish a Definition of Required Functionality
 SP 3.3-1: Analyze Requirements
 SP 3.4-3: Analyze Requirements to Achieve Balance
 SP 3.5-1: Validate Requirements
 SP 3.5-2: Validate Requirements with Comprehensive Methods

CMMI and Requirements

Requirement processes need to be defined, trained, and improved (e.g., OPF, OPD, OT, OID).

Support processes are critical for measuring and managing requirements (e.g., CM, MA, PPQA).

Defects need to be removed and prevented in requirements (e.g., PI, VER, VAL, CAR).

IPPD (i.e., integrated product teams) also contains allocating requirements to teams (e.g., IPM).

Supplier Sourcing requires managing supplier requirements (e.g., SAM).
Outline

Why Focus on Requirements?
A Practical Requirements Classification
CMMI Requirements Overview
Practical Approaches for Requirements
Requirement Examples
Some Advanced Approaches
Summary

Practical Strategies

1. Define a lean Requirements Management (REQM) Process.
2. Use lean Configuration Management (CM) and CM Metrics.
3. Use Requirements Metrics (e.g., priority, stability, risk, number of requirements, defect density, etc).
4. Define the requirements process (RD), and use lessons learned from quality (e.g., QFD, Juran, etc).
5. Tailor a requirements standard (e.g., IEEE).
6. Use early defect detection and defect prevention.
7. Use operational definitions to define requirements.
Outline

Why Focus on Requirements?
A Practical Requirements Classification
CMMI Requirements Overview
Practical Approaches for Requirements

Requirement Examples

Some Advanced Approaches
Summary

1. Define Lean Requirements Processes (REQM, RD)

- Customer Requirements
- Change Requests
- Problem Reports

Develop Requirements (RD)

- Product Requirements

Manage Requirements (REQM, CM)

- Updated Customer Requirements
- Updated Product Requirements

Copyright © 1994-2007 by Process Assets, LLC (PAL)
1. Manage Requirements (REQM)

Purpose: Effectively Manage Requirements Changes

Inputs
- Customer Req.
- Product Req.
- Change Requests
- Problem Reports

Roles: Project Manager (PM), CCB

Task Summary

<table>
<thead>
<tr>
<th>Entry</th>
<th>Tasks</th>
<th>eXit</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outputs
- Customer Req.
- Product Req.
- Baselines
- Releases

1. Example Lean NASA JPL MGSS CM Process

7.1 Perform CM Planning

7.2 Perform Configuration Control

7.3 Perform Configuration Status Accounting

7.4 Perform CM Audits

1. Example Lean CM Process

5 W's on 1 Page in a Process Model

Example CM Process:

- **Why**: Develop CM Plans that meet project needs.
- **What**: Project initial and Draft Project Plan.
- **How**: Organizational CM Plan is approved and meets CM Standard.
- **Roles & Activities**: Project Manager, CM Lead, GA

2. Use CM and CM Metrics

Fundamental Baselines

- Requirements Baseline
- Implementation Baseline
- Product Baseline

Place the requirements under formal CM and use CCB’s to control changes.

Example CM Metrics:
- Number of CRs/PRs (e.g., open vs. closed over time)
- Requirements Volatility (e.g., number of CRs per requirement)
3. Example Requirement Metrics

<table>
<thead>
<tr>
<th>#</th>
<th>Requirement</th>
<th>Reference (e.g., customer)</th>
<th>Allocation</th>
<th>Stability (H/M/L)</th>
<th>Risk (H/M/L)</th>
<th>Priority (H/M/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System shall send an RTF FAX</td>
<td>SOW # 10-20.3</td>
<td>Software</td>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>Aircraft position shall be updated by the Inertial Navigation System (INS) Solution</td>
<td>ORD #2-30-20.3.4.4</td>
<td>Software</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
</tbody>
</table>

4. Documentation Framework

- POLICIES: "Laws" or "Principles" that govern operations
- STANDARDS: "Operational definitions" & "acceptance criteria"
- PROCESSES: "What happens over time" to build products
- PROCEDURES: "How to" or step by step instructions
- TRAINING: Provides the needed knowledge and skills
- TOOLS: Supports and automates operations

* Slide adapted from "A Software Process Framework for the SEI Capability Maturity Model", CMU/SEI-94-HB-01
4. Requirements Process - NASA Onboard Shuttle Project

- Identify need
- Examine architectural options
- Develop software system solution

- Define software requirements in accordance with operational concept and system requirements
- Produce requirements specification

- Assess technical and resource impact
- Determine acceptability, implementability, testability
- Examine requirements readiness

- Discuss proposed requirement in detail
- Discuss operational scenarios
- Identify issues and errors

- Correct errors
- Resolve issues
- Rewrite

- Evaluate risks and benefits
- Decide on resource expenditures
- Establish baseline

5. IEEE SyRS and SRS Standard Outlines

SyRS

1.0 Introduction
2.0 General System Description
3.0 System Capabilities, Conditions, and Constraints
 3.1 Physical
 3.2 System Performance Characteristics
 3.3 System Security
 3.4 Information Management
 3.5 System Operations
 3.6 Policy and Regulation
 3.7 System Life Cycle
4.0 System Interfaces

SRS

1.0 Introduction
2.0 Overall Description
3.0 Specific Requirements
 3.1 External Interface Requirements
 3.2 Functional Requirements
 3.3 Performance Requirements
 3.4 Design Constraints
 3.5 Software System Attributes
 3.6 Other Requirements

Appendices
Index

* Adapted from: IEEE Std 1233-1998
* Adapted from: IEEE Std 830-1998
5. Organizing SRS Section 3

SRS Section 3 can be organized by:

- Mode
- User Class
- Object
- Feature
- Stimulus/Response
- Functional Hierarchy
- Multiple organizations

6. Example Requirements

Checklist Categories

1. Clarity
2. Completeness
3. Complexity
4. Consistency
5. Constraints
6. Feasibility
7. Functionality/Logic
8. Interfaces
9. Standards
10. TBDs
11. Testability
12. Traceability
Etc.
7. Example Operational Definition

What is a good requirement? When is a requirement defined? Questions like these are difficult to answer without operational definitions.

An operational definition precisely and concisely defines a measurable requirement that states [NASA 96]:

- What it has to do
- How well it has to do it
- Under what conditions it has to do it

<table>
<thead>
<tr>
<th>#</th>
<th>Requirement (What)</th>
<th>Conditions</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Base Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Report total percentage of students that passed the first test and graduated</td>
<td>Students that pass first test by => 70% score</td>
<td>Calculate Percentage to 3 decimal places</td>
<td>Plus or minus .001</td>
<td>Percent</td>
</tr>
<tr>
<td>2</td>
<td>Report total percentage of students that failed the second test and did not graduate</td>
<td>Students that failed second test by < a 70% score</td>
<td>Calculate Percentage to 3 decimal places</td>
<td>Plus or minus .001</td>
<td>Percent</td>
</tr>
</tbody>
</table>
Outline

Why Focus on Requirements?

A Practical Requirements Classification

CMMI Requirements Overview

Practical Approaches for Requirements

Requirement Examples

Some Advanced Approaches

Summary

Some Advanced Strategies

Juran Model: Customer requirements are written in the customer’s language, then translated into the product requirements written in producer’s language.

QFD/Juran’s Quality Planning Process: Measurable requirements that meet customer needs using a defined process (e.g., House of Quality).

Usage Scenarios/Use Cases/Operational Scenarios: A powerful way to identify requirements based on user needs.

Requirements written in formal languages.
Outline

Why Focus on Requirements?
A Practical Requirements Classification
CMMI Requirements Overview
Practical Approaches for Requirements
Requirement Examples
Some Advanced Approaches

Summary

The hardest single part of building a system is the requirements.

The top requirements problems are inadequate requirements specifications, changes to requirements, and lack of user input.

Requirements elicitation problems fall into problems of scope, understanding, and volatility.

There are practical strategies that you can use today that will help you address problems with requirements.
References

- [CMMI02] Capability Maturity Model® Integration (CMMI Version 1.1), CMU/SEI-2002-TR-011, March 2002