Measurement Strategies in the CMMI

CMMI Technology Conference & User Group
12-15 November 2007

Rick Hefner, Ph.D.
Director, Process Management
Northrop Grumman Corporation
rick.hefner@ngc.com
Background

- Software measurement remains a challenge for many projects and organizations.
- It is difficult to select a set of measures that are easy to define and collect, yet offer real insight into progress, process, and quality.
- This presentation will discuss strategies for starting and enhancing a CMMI-compliant measurement system.
CMMI
Measurement and Analysis Process Area

- **Purpose**
 - Develop and sustain a measurement capability that is used to support management information needs

- **Involves specifying:**
 - Information needs and measurement objectives
 - Measures
 - Data collection and storage mechanisms
 - Analysis techniques
 - Reporting and feedback mechanisms

- **Written to conform to ISO/IEC 15939, Software Engineering – Software Measurement Process**
Practical Software and Systems Measurement

Measurement Principles

- Measurement is a consistent but flexible process that must be tailored to the unique information needs and characteristics of the project or organization.

- Decision makers must understand what is being measured and trust the information.

- Measurement must be used to be meaningful.

Reference: http://www.psmsc.com

Rick Hefner, "Measurement Strategies in the CMMI", 24 April 2007
Different types of information are needed at different levels of the infrastructure.
Practical Software and Systems Measurement

Analysis Model

- Technology Effectiveness
- Process Performance
- Product Size and Stability
- Resources and Cost
- Schedule and Progress
- Customer Satisfaction
- Product Quality

Rick Hefner, "Measurement Strategies in the CMMI", 24 April 2007
ISO/IEC 15939, Software Engineering - Software Measurement Process
Measurement and Analysis - Goal 1

<table>
<thead>
<tr>
<th>Goal/Practices</th>
<th>Notes</th>
<th>Typical Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG 1 Align Measurement and Analysis Activities</td>
<td>Measurement objectives and activities are aligned with identified information needs and objectives.</td>
<td>Focus is on alignment with objectives, not just specifying a set of metrics</td>
</tr>
<tr>
<td>SP 1.1 Establish Measurement Objectives</td>
<td>Establish and maintain measurement objectives that are derived from identified information needs and objectives.</td>
<td>See following slide</td>
</tr>
<tr>
<td>SP 1.2 Specify Measures</td>
<td>Specify measures to address the measurement objectives.</td>
<td></td>
</tr>
<tr>
<td>SP 1.3 Specify Data Collection and Storage Procedures</td>
<td>Specify how measurement data will be obtained and stored.</td>
<td></td>
</tr>
<tr>
<td>SP 1.4 Specify Analysis Procedures</td>
<td>Specify how measurement data will be analyzed and reported.</td>
<td></td>
</tr>
</tbody>
</table>
Information Needs & Measurement Objectives

- **Information needs** set requirements for determining the needed metrics

- **Measurement objectives** set requirements for determining the needed metrics collection, storage, analysis, and reporting mechanisms

Information Needs
- What types of information are needed by the project?
 - Progress
 - Quality
 - Information needed by the organization
 - Information needed by the customer

Measurement Objectives
- What objectives influence how the measures are collected, analyzed, stored, reported?
 - Accuracy
 - Timeliness
 - Security
Measurement and Analysis - Goal 2

<table>
<thead>
<tr>
<th>Goal/Practices</th>
<th>Notes</th>
<th>Typical Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG 2 Provide Measurement Results</td>
<td>Measurement results that address identified information needs and objectives are provided.</td>
<td></td>
</tr>
<tr>
<td>SP 2.1 Collect Measurement Data</td>
<td>Obtain specified measurement data.</td>
<td>Measuremen t collection records</td>
</tr>
<tr>
<td>SP 2.2 Analyze Measurement Data</td>
<td>Analyze and interpret measurement data.</td>
<td>Evidence should explicitly show interpretations</td>
</tr>
<tr>
<td>SP 2.3 Store Data and Results</td>
<td>Manage and store measurement data, measurement specifications, and analysis results.</td>
<td></td>
</tr>
<tr>
<td>SP 2.4 Communicate Results</td>
<td>Report results of measurement and analysis activities to all relevant stakeholders.</td>
<td></td>
</tr>
</tbody>
</table>
What Does the Data Mean?

Large number of defects found in high complexity components; will require second review

Defect range indicates an effective review process

Component #

Defects per component

1 1 12 13 14 15 16 17 1

UCL
Management Styles in the CMMI

<table>
<thead>
<tr>
<th>Level</th>
<th>Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Optimizing</td>
<td>Causal Analysis and Resolution</td>
</tr>
<tr>
<td></td>
<td>Organizational Innovation and Deployment</td>
</tr>
<tr>
<td>4 Quantitatively Managed</td>
<td>Quantitative Project Management</td>
</tr>
<tr>
<td></td>
<td>Organizational Process Performance</td>
</tr>
<tr>
<td>3 Defined</td>
<td>Requirements Development</td>
</tr>
<tr>
<td></td>
<td>Technical Solution</td>
</tr>
<tr>
<td></td>
<td>Product Integration</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td>Organizational Process Focus</td>
</tr>
<tr>
<td></td>
<td>Organizational Process Definition</td>
</tr>
<tr>
<td></td>
<td>Organizational Training</td>
</tr>
<tr>
<td></td>
<td>Risk Management</td>
</tr>
<tr>
<td></td>
<td>Integrated Project Management (for IPPD*)</td>
</tr>
<tr>
<td></td>
<td>Integrated Teaming*</td>
</tr>
<tr>
<td></td>
<td>Integrated Supplier Management**</td>
</tr>
<tr>
<td></td>
<td>Decision Analysis and Resolution</td>
</tr>
<tr>
<td></td>
<td>Organizational Environment for Integration*</td>
</tr>
<tr>
<td>2 Managed</td>
<td>Requirements Management</td>
</tr>
<tr>
<td></td>
<td>Project Planning</td>
</tr>
<tr>
<td></td>
<td>Project Monitoring and Control</td>
</tr>
<tr>
<td></td>
<td>Supplier Agreement Management</td>
</tr>
<tr>
<td></td>
<td>Measurement and Analysis</td>
</tr>
<tr>
<td></td>
<td>Process and Product Quality Assurance</td>
</tr>
<tr>
<td></td>
<td>Configuration Management</td>
</tr>
<tr>
<td>1 Performed</td>
<td>Requirements Management</td>
</tr>
<tr>
<td></td>
<td>Project Planning</td>
</tr>
<tr>
<td></td>
<td>Project Monitoring and Control</td>
</tr>
<tr>
<td></td>
<td>Supplier Agreement Management</td>
</tr>
<tr>
<td></td>
<td>Measurement and Analysis</td>
</tr>
<tr>
<td></td>
<td>Process and Product Quality Assurance</td>
</tr>
<tr>
<td></td>
<td>Configuration Management</td>
</tr>
</tbody>
</table>

Rick Hefner, "Measurement Strategies in the CMMI", 24 April 2007
Measurement at CMMI Level 4

- **Organizational Process Performance**
 - Establishes a quantitative understanding of the performance of the organization’s set of standard processes
 - Provides process performance data, baselines, and models to quantitatively manage the organization’s projects

- **Quantitative Project Management**
 - Quantitatively manage the project’s defined process to achieve the project’s established quality and process-performance objectives.
Exercise
What is Quantitative Management?

- Suppose your project conducted several peer reviews of similar code, and analyzed the results
 - Mean = 7.8 defects/KSLOC
 - $+3\sigma = 11.60$ defects/KSLOC
 - $-3\sigma = 4.001$ defects/KSLOC

- What would you expect the next peer review to produce in terms of defects/KSLOC?

- What would you think if a review resulted in 10 defects/KSLOC?

- 3 defects/KSLOC?
Exercise
What is Required for Quantitative Management?

- What is needed to develop the statistical characterization of a process?
 - The process has to be stable (predictable)
 - Process must be consistently performed
 - Complex processes may need to be stratified (separated into simpler processes)
 - There has to be enough data points to statistically characterize the process
 - Processes must occur frequently within a similar context (project or organization)

![Control Chart](chart.png)

- Observation Number
- Individual Value
- Mean = 7.8
- UCL = 11.60
- LCL = 4.001

Rick Hefner, "Measurement Strategies in the CMMI", 24 April 2007
Typical Choices in Industry

- Most customers care about:
 - Delivered defects
 - Cost and schedule

- So organizations try to predict:
 - Defects found throughout the lifecycle
 - Effectiveness of peer reviews, testing
 - Cost achieved/actual (Cost Performance Index – CPI)
 - Schedule achieved/actual (Schedule Performance Index – SPI)

Defect Detection Profile

- Process performance
 - Process measures (e.g., effectiveness, efficiency, speed)
 - Product measures (e.g., quality, defect density).
Measurement at CMMI Level 5

- **Organizational Innovation & Deployment**
 - Set quantitative improvement goals (e.g., reduce variation by X%, reduce mean by Y%)
 - Seek innovative improvements - cause a shift in process capability
 - Analyze potential improvements to estimate costs and impacts (benefits)
 - Pilot improvements to ensure success
 - Measure the impact of improvements quantitatively (variation and mean)

- **Causal Analysis & Resolution**
 - Identify and analyze causes of defects and other problems
 - Take specific actions to remove the causes - prevent the occurrence of those types of defects and problems in the future
Peer Reviews - Improving the Process

- **Reduce the variation**
 - Train people on the process
 - Create procedures/checklists
 - Strengthen process audits

- **Increase the effectiveness (increase the mean)**
 - Train people
 - Create checklists
 - Reduce waste and re-work
 - Replicate best practices from other projects

![Control Chart with Means and Limits]

- **Mean** = 7.268
- **UCL** = 11.17
- **LCL** = 3.363

Rick Hefner, "Measurement Strategies in the CMMI", 24 April 2007
Lessons Learned

- To establish (revitalize) a measurement system, start by identifying all the stakeholders and what information they need to make decisions
 - Look for common needs, which drive common metrics that can be used by many stakeholders
 - There is no “magic” set of metrics that works for every project or every organization

- It takes several months, if not years, to develop an effective measurement system
 - Initially, focus is on ensuring data is provided
 - Next, focus in on data definition problems
 - Finally, focus on effective use of the data
 - Concentrate on developing a data-driven culture

- When moving to Levels 4 and 5, expect a period of trial-and-error to discover the metrics you need
 - Focus on management by variation (e.g., Six Sigma)