

DEFINING THE FUTURE

Programmable SDR

CBIS 2007

Chris Wasser Technical Director Northrop Grumman

ntelligeng

urveillance and

Navigation System.

stems Integration

econnaissance

Definition

SDR

- Software-defined Radio
- "wireless communication in which the transmitter modulation is generated or defined by a computer, and the receiver uses a computer to recover the signal"*

Background

Transmission of information (using Morse Code) via "wireless telegraphy" was developed by Guglielmo Marconi in 1895, although others had experimented with electricity and "spark-gap" transmission as much as 50 years prior.

To this day, radios provide essential communication to military forces the world over.

Radio Design

Copyright 2006 Northrop Grumman Corporation

NORTHROP GRUMMAN

Radios

How do they work?

- Electro-magnetic (RF) energy creation
 - Sine wave

Radios (2)

Radios (3)

Another Way to Create RF

- create "sine wave" from scratch
 - approximate the shape using digital values
 - using a "Digital to Analog Converter" (DAC)

Some problems with the approximation

- Since the number values are "quantized"
 - rigid set of whole values (0, 1, 2, 3...)

Some problems with the approximation (2)

9

What to do?

Better quantization

- "higher resolution"
 - More expensive
- More values
 - remember Calculus?
 - produce the values faster
 - Nyquist theorem* identifies the lower limit
 - 2B, or 2 x (bandwidth)

* http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

A Short Aside...

- We have to say it... JTRS
 - Joint Tactical Radio System

Driving force behind SDR design and implementation

- separate the protocol (waveform) from the hardware

Design standard architecture

- Software Communication Architecture (CA)
- allows waveforms to be converted into RF signals
- Design of standard "waveforms"

Waveforms

ISO OSI Layers 1-3

- physical RF signals
- data encoding schemes
 - Iow-level channel sharing
 - security, error detection/correction
- networking
 - high-level channel sharing
 - Internet Protocol (IP)
 - Quality of Service (QoS)

SDR Block Design

hypothetical

Performance Example

802.11b

- 2.4 GHz, 44MHz channel
 - in other words: data takes up only 44MHz

- Nyquist rate = 2B = 2 * 44 MHz = 88 MHz sample rate
- This leaves a LOT of CPU performance to spare!

Current Generation Hardware

- Xilinx Virtex-II Pro and Virtex 4 FX FPGAs have embedded 405 PowerPC processors
 - 400MHz,
 - FPGA implements signal processing instructions
- Intel Core2 Extreme
 - 2.93 GHz
 - High performance Math core
 - special signal processing instructions
- Texas Instruments TMS320C6x series
 - 1 GHz
 - special signal processing functions

CBRNE Design Example

Current JCID design

- CPU: Intel Xscale PXA255, 400MHz
- Memory:
 - RAM: 256 MB
 - Flash: 128 MB
- Embedded software: C++, ~16MB
 - Windows CE 5.0
- Manages up to 4 sensors via serial (RS-232) or Ethernet
 - < 10% of the CPU (nominal)</p>
- Wireless (802.11b) mesh networking
 - separate subsystem

CBRNE Design Example (2)

- CPU:
 - Intel Xscale PXA255, 400MHz -> many choices
- Memory:
 - Most SDRs will have at least 256Mb for operation, plus non-volatile (flash) storage for waveforms
- Windows CE 5.0
 - possibly need to port S/W to another OS
 - Ikely Linux running "on top" of the SDR's OS
- Serial (RS-232) or Ethernet
 - many JTRS SDRs will have Ethernet to support net-centric data comms
 - Serial is another matter... but chips are cheap
- Wireless mesh networking
 - part of the "waveform" design

ROP GRUMMA

Considerations

Design issues include:

- Different, possible "non typical" CPUs
 - PowerPC, embedded ARM, etc.
- Real-time Operating Systems (RTOS)
 - as opposed to Windows or Linux
 - but there are options...
- Power and heat
 - fast, powerful CPUs turn lots of electrons into lots of heat

CPUs

 Most current Sensor management software is either C, C++ or Java

- PowerPC
 - GNU "gcc" compiler available
 - Java Virtual Machine (JVM) available
- ARM
 - GNU "gcc" compiler available
 - Java Virtual Machine (JVM) available
- Note on the JVM:
 - be wary of how much resources these take up
 - specialty versions
 - but watch for missing features

op grumm

Operating Systems

- Most current Sensor management software is either Windows, WindowsCE or Linux
 - Windows / WindowsCE
 - NOT available for PowerPC
 - but WindowsCE is available for ARM
 - Linux
 - Both PowerPC and ARM available
 - as well as for many others...
 - Watch out for resource needs for OS over RTOS

Some Other Gotchas

There are some "gotchas"

- embedded devices tend to have "quirks"
 - Iimited memory
 - no support for virtual memory
 - special instructions to access Signal Processing features
- Current SDR designs
 - have limited external connections
 - limited (or no) Ethernet
 - limited (or no) Serial port support
 - power hungry

Network Interaction

- Keep in mind that the application software is competing with the SDR software
 - SDR
 - Iow latency, high CPU demand, bursty
 - Application
 - moderate latency, moderate CPU demand, more regular
 - Watch out for applications that are:
 - Low latency
 - sensor management...
 - high CPU demand
 - M&S is probably a bad idea...

Conclusion

- SDRs will provide a ubiquitous computer platform across the military
- "Excess" capacity can be exploited
- Issues:
 - unique computing environment
 - RTOS, latency, specialty CPUs, odd form factors
- SDRs provide an excellent opportunity for embedding Force Protection capabilities with the forces we are protecting.

DEFINING THE FUTURE

Questions?

Copyright 2006 Northrop Grumman Corporation, All Rights Reserve

Intelligenc

urveillance and

Navigation Systems

onic Air Defense

Systems Integration

econnaissance

24