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IntroductionIntroduction

What is the optimal budget $B and its distribution to 
N investment units in order to reduce the 
consequences of S number of CB events?

MIDST: Problem Statement
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Soliciting Information: Data CardsSoliciting Information: Data Cards



Establishing effectivity functionEstablishing effectivity function
Polynomial or spline interpolation
Multivariate interpolation (See Prasad et al. tommorow!)

$X Funding

e (Effectivity)



Establishing effectivity functionEstablishing effectivity function
Using this method we establish the matrix of effectivity
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For N: investment units and S: CB events



Fusing EffectivitiesFusing Effectivities
Considering the interaction between IUs on the final 

consequences we have to fuse these effectivities

Many fusion operators exist. Example 2D fusion:

Very conservative Very optimistic



Expected ConsequencesExpected Consequences
The fusion operation results in
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For S: CB events

The expected consequence for each CB event can be 
computed as
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If we have a bimodal surface 

Minimum 

consequences

What does optimization mean?What does optimization mean?

We need to identify “x” that results in minimum “C”



Our optimization challenges are

- The surface of our function is not bimodal

-There might be many local minima

-There is more than one objective and they are not 
necessary achievable all together

- Computing time, space and accuracy resolution

- Practical interests



- Derivative based optimization
- Gradient descent method
- Levenberg Marquadrt
- Many other

- Non-derivative based optimization
- Genetic algorithms
- Simulated annealing
- Many other

MethodsMethods
- To address the risk associated with the previously 
listed concerns/challenges, a group of optimization 
methods was examined



Genetic Algorithms (GA) mimics laws of Natural 
Evolution which emphasizes “survival of the fittest”.

In  GA a “population” that contains different 
possible solutions to the problem is created. 

DerivativeDerivative--free optimizationfree optimization



Genetic Algorithms Genetic Algorithms 
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The process is repeated until evolution happens
“a solution is found!”
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MultiMulti--Objective OptimizationObjective Optimization
- It is practical to assume that the decision maker might 
have priorities on the different objectives casualties/mission 
disruption and time to recover.

-In this case, usually there exist more than one optimal 
solution to the problem (Named Pareto solution)

- Based on the preferences, these solutions can be rank 
ordered. 



MultiMulti--Objective OptimizationObjective Optimization

- Three major issues differentiate between single and multi- 
objective optimizations

- Multiple (three) goals instead of one

- Dealing with multiple search spaces not one

- Artificial fixes affect results

- We are looking for a set of Pareto-optimal solutions



MultiMulti--Objective OptimizationObjective Optimization

Pareto Optimal Solutions 
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- Global criteria method
- Require target values for the functions
- Can incorporate weights for preferences

- Hierarchical optimization method
- Optimize the top priority function
- Specify constraints to prevent deteriorating the 
optimized function

- Multi-Objective Genetic Optimization (MOGA)
- Non-dominated Sorting Genetic Algorithm

MultiMulti--Objective Optimization MethodsObjective Optimization Methods



MultiMulti--Objective OptimizationObjective Optimization
Hierarchical Method

- Rank order the objective functions

-The j-1  function is used as constraint in optimizing 
the jth function. 
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MultiMulti--Objective OptimizationObjective Optimization
Global Criterion 

- The threshold vector is defined by

w can also be implemented to represent preferences 
as weights
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MultiMulti--Objective OptimizationObjective Optimization
Non-dominated Sorting Genetic Algorithm (NSGA)

- While similar to GA,  NSGA sorts the population according 
to non-domination principles.

- Population is classified into a number of mutually exclusive 
classes

- Highest fitness is assigned to class that are closest to the 
Pareto-optimal front

- The use of non-dominated sorting allows diversity to 
solutions and thus guarantees  reaching the Pareto-front.

-NSGA also includes elitism principles which allows it to find 
higher number of Pareto-solutions.
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Merits and shortcomingsMerits and shortcomings
- Derivative based

- If the space is continuum, it converges very fast and an 
optimal solution is guaranteed
- If too many local minima exist, the algorithm might be 
trapped and cannot find global minima

- Non-derivative based
- If the space is non-continuum, GA will be able to find 
the solution
- Whether local minima exist or not, it will converge.
- GA is better equipped with some aiding optimization 
technique to narrow search domain



Reduction in Mission Disruption

Reduction on Recovery Time

Reduction in Casualties

Case studyCase study
- For a given group of data cards and inputs we identified  



Case studyCase study
- For a given group of data cards and inputs we identified  
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Case studyCase study
- At the optimal level, we can identify the funding portfolio



Portfolio for Base Funding C1 = 21, C2 = 21. C3 = 42



Portfolio for Optimal Funding C1 = 11, C2 = 12. C3 = 12



-We demonstrated the possible use of multi-objective genetic 
optimization for allocation of funding for investment units to reduce 
consequences of CB events

- Classical gradient based versus gradient free optimization techniques 
have been examined in search for Pareto solutions 

- The presented work is part of MIDST: A robust mathematical 
framework that can be used to help decision makers for funding 
allocations considering multiple objectives and priorities

Research is currently on-going to integrate fuzzy rank ordering 
module as part of the optimization process.

ConclusionsConclusions
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DerivativeDerivative--based optimizationbased optimization

gGoldnew ηθθ +=

Gradient descent method
- Assumes continuous and differentiable function

-g is the derivative of the objective function

- G is a positive definite matrix 

- η
 

is the step size
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DerivativeDerivative--based optimizationbased optimization
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Levenberg-Marquardt (LM) method

- A modified version of classical Newton’s method. It 
also assumes continuous and differentiable function

- g is the gradient, I is the identity matrix, λ is some 
nonnegative value and H is the Hessian matrix

− η is the step size as defined before

( ) ( ) ( ) ( ) T

2
n

2

2
2

2

2
1

2
2 E....EEE)(H ⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

=∇=
θ
θ

θ
θ

θ
θθθ



Levenberg-Marquardt

Newton

Steepest Descent
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