Medical Modeling of Particle Size Effects for Inhalation Hazards

Chem-Bio Information Systems 2007 Austin, TX

Gene McClellan, Jason Rodriguez and Kyle Millage 10 January 2007

Topic Outline

- Objective
- Background
- Why should we care
- Inhalation mechanics
- Dispersion by particle size
- Anatomy and biokinetics
- Conclusion

Objective

Develop medical models for the influence of aerosol particle size on the health effects of inhaled CBRN hazards to improve hazard assessment, particularly in urban environments.

3 µm

Background – Aerosol Inhalation

- Techniques well developed for radionuclides and atmospheric particulates
 - Inhalation mechanics well established
 - Human response well studied
- Particle size modeling is incomplete for chem-bio agents
 - Inhalation mechanics is applicable
 - Critical new piece is variation in human response

Modeling of Particle Size Effects in CBRN Consequence Assessment Is Incomplete

Used in atmospheric transport

- Nuclear fallout directly dependent on settling
- CBWPN in HPAC allows User to specify a lognormal particle size distribution
- Radionuclide dose conversion factors for inhalation account for particle size
- Inhalation model for CB agents is crude
 - Typically assume 5μ particles, 100% inhaled
 - \bullet Or use a size cut-off like 10 μ
 - Neglected for liquid agents

Why Should We Care?

- Often-expressed beliefs
 - Can neglect large particles
 - They settle out too quickly
 - Don't penetrate deeply into the lung
 - Can neglect small particles
 Not retained in lungs
- These are arguments for efficacy of $3 5 \mu$ range
 - Valid, but...
 - Arguments do not support the converse!

Particle Size-Dependent Tularemia

Macaca mulatta (rhesus) monkeys¹

Particle size	2.1 and 7.5 μm	12.5 and 24.0 μm
Exposed	48	45
% Infected	100%	84%
Onset Time	2-3 Days	6-10 Days
Primary infection site	Lower respiratory system, pneumonitis	Upper respiratory tract, nasal pharyngeal area, cervical and mandibular lymph nodes; eyes (15%)
% fatal	69%	53%
Time to death	4-8 Days	8-21 Days
LD ₅₀ (organisms)	14 and 378	872 and 4,447
LD ₅₀ (particles)	14 and 28	11 and 8

¹Data from Day and Berendt., 1972.

Particle Size-Dependent Ricin Intoxication

BALB/c mice¹

Particle size	1.0 μm	5.0 and 12.0 μm
Exposed mice	48	48
Dose delivered (fixed)	~4.5 times the LD ₅₀	~3.7 times the LD ₅₀
Regional deposition (1-hr post-exposure)	60% lungs 20% trachea 10% nares 10% stomach	20% lungs 80% trachea
% affected	Ricin binds to almost all mammalian cells, allowing for effects on most cell types	
% fatal	100%	0%
Time to death	Within 72 hours	

¹Roy et al., 2003.

•The large particles lack regional deposition into pulmonary portion of lung -Do not affect cell types necessary to induce a lethality

The Respiratory Tract Has Three Anatomical-Functional Regions

Head (or extra-thoracic, ET) airways

- Nose and mouth to the larnyx
- Nasal airways and the oral cavity
- Tracheobronchial (TB) region
 - Larnyx to the terminal bronchioles
 - Ciliated epithelium, mucous-secreting
- Pulmonary (P) region
 - Respiratory bronchioles to the terminal alveoli
 - Gas-exchange epithelium, non-ciliated

Illustration from Asgharian et al., 2006.

Deposition vs. Size Is Complex

Illustration from Snipes, 1994.

Inhalability Factor Is Important for Particles Larger Than 3 - 5 μm

- Inhalability *I*(*d_{ae}*) measures
 likelihood of particle inspiration
- Nasal breathing only,
 - *I* approaches 0 for particles larger than 100 μm¹
- Oronasal breathing,
 - *I* remains 0.5, even for particles 100-150 μm²
- ¹ Menache et al., 1995 ² ICRP66, 1994

Expanding the Realm of Possibility 12

Inhalability Ratio Can Be Modeled¹

Particle Settling - HPAC Test Cases

- F. tularensis, dry agent
- Missile with sub-munitions, close spread (10 m) to simulate single point release
- Particle sizes from 2, 5, 20, and 100 microns
- Release mass fixed (1.6 kg dispersed)
- All releases at same location and time
- Historic winds

Expanding the Realm of Possibility

Surface Dosage @ 4 Hours

Expanding the Realm of Possibility

Inhalation and Biokinetics of Aerosols

Deposition

- Physical processes
- Anatomy
- Breathing mode
- Dissolution-absorption-colony formation

Clearance

Respiratory Tract Anatomy and Geometry Influence Deposition

- Physical structure
 - Airway diameters
 - Branching patterns
 - Path length to alveoli
 - Structural dynamics
 - Response to biological or chemical stimuli
 - Inflammatory response
- Intersubject variability
- Breathing mode
 - Nasal
 - Oral

Breathing Mode Has Major Impact on Particle Deposition Pattern

- Nasal breathing
 - Convoluted airways
 - Filter large and small
- Oral breathing
 - Increases TB and P exposure
 - Raises inhalability of larger particles
- Oronasal breathing
 - Linear combination
- Varies with exertion

Illustration from Asgharian et al., 2006.

Nasal airways

Clearance After Depostion

- Physical clearance
 - ET
 - Mostly swallowed
 - Some by blowing nose
 - TB
 - > Mucociliary "elevator" \rightarrow swallowed
 - > 24 48 h clearance time
 - Pulmonary
 - Collection by macrophages
 - Slow clearance; months...
- Dissolution-absorption
 - Dependent on physical and chemical properties

Calculated Deposition for Humans Correlates With The Tularemia Data for Monkeys

Nasal Breathing (Inhalability Factor Included)

Conclusion

- "Standard-sized" particles (3-5m) are most efficient as inhalation hazards
- Larger particles (10-25m) are quite effective for some agents, but not for all
- Medical outcome depends on particle size
 - Data shown for tularemia, ricin
 - Data exist for plague, anthrax, SEB, Q fever, brucellosis, and botulism
- Particle size-dependent effects can and should be included in medical modeling and simulation

References

Asgharian, B., W. Hofmann, and F. J. Miller, (2006). Dosimetry of particles in humans: from children to adults. In Gardner, D.E., *Toxicology of the Lung*, 4th ed. Boca Raton: CRC Press, , pp. 151-194.

Asgharian, B., Hofmann, W., and Bergmann, R. (2001). Particle deposition in a multiple-path model of the human lung. *Aerosol Sci. Technol.* 34: 332-339.

Day, W.C., and Berendt, R.F. (1972). *Experimental tularemia in Macaca mulatta: relationship of aerosol particle size to the infectivity of airborne pasteurella tularensis. Infection and Immunity.* 77-82.

Druett, H.A., et al. (1953). *The influence of particle size on respiratory infection with anthrax spores*. J. Hyg. (Cambridge) 51:359-371

Druett, H.A., et al. (1956). *Studies on respiratory infection: II. The influence of aerosol particle size on infection of the guinea pigs with Pasteurella pestis.* J. Hyg. (Cambridge) 53:37-48

Druett, H.A., et al. (1956). *Studies on respiratory infection: III. Experiments with Brucella suis.* J. Hyg. (Cambridge) 54(1):49-57

ICRP. (1994) Human respiratory tract model for radiological protection. ICRP Publ 66. Annals of ICRP. 24: 23.

Menache, M., Miller, F., Raabe, O. (1995). Particle inhalability curves for humans and small laboratory animals. *Annals of Occupational Hygiene*. 39:317-328.

Roy, C.J., Hale, M., Hartings, J.M., and Pitt, L. (2003). *Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice*. Inhalation Toxicology. 15:619-638

Snipes, M. B. (1994), Kinetics of inhaled radionuclides. In *Internal Radiation Dosimetry, Health Physics Society Summer School 1994* (O.G. Raabe, ed.), Medical Physics Publishing, Madison, WI.

