Modelling Medical and Operational Effects of CBRN Usage

Oliver Lanning & Deb Fish

Defence Science and Technology Laboratory, UK

© Crown Copyright 2007. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.
Introduction

• Decision support tools are developed to predict the effect of CBR events on personnel, equipment and operations

• Tools, such as JOEF and the MOD’s Virtual Battlespace, can be used to
 • support the equipment acquisition programme
 • aid pre-operational planning
 • assess the operational implications of concepts, doctrine and technology development
 • guide the research programme
 • aid CBRN training

• This talk will focus on recent work on casualty modelling, quantifying uncertainty and modelling operational effects
What is the Virtual Battlespace?

- A synthetic environment including (some under development)
 - State-of-the-art dispersion models (UDM & SCIPUFF)
 - Models of CBR defence system (detection, protection, MCMs)
 - Representation of movement of entities (aircraft, army units)
 - Links to combat & facility models (WISE, OneSAF, STAFFS)
 - Multiple run controller
 - Wargaming mode
The Virtual Battlespace Models

- Dispersion Modelling
 - CBR sources and hazard plumes (weapons, IEDs, RDDs, TICs & TIMs)
 - Urban and Rural (SCIPuff & UDM)
 - Concentration Realisation
- Meteorology
 - Terrain
 - Local Wind Turbulence
 - Sea Breeze
- Military Units/Personnel
 - Effects (casualties)
 - Inhalation & Contact Hazard (liquid pickup)
 - Medical Countermeasures
 - IPE
 - Physiological Burden
 - Aggregation
 - Value of Information
- Detectors
 - Simple (threshold)
 - Generic
 - Specific
 - Standoff
 - Biological Background
 - Single & Network Alarms
- Modes of Use
 - Wargaming
 - Assessment
Casualty Modelling

- Modelling physiological effects of a CBR attack or incident is crucial
 - Need to account for both inhalation and percutaneous ingestion of agent
 - Should include individual protection
 - Respirator
 - Suit
 - Predict effects of medical countermeasures
 - Nerve agent treatments
 - Vaccines
 - Antibiotics
 - Antitoxins/Antivirals
Medical Countermeasures (MCMs)

- The time to onset of symptoms is crucial for biological MCMs
 - Symptoms typically present days after exposure
- The efficacy of antibiotics, antivirals and antitoxins are strongly time dependent
- Therefore, the model accounts for the time that these MCMs are administered
 - Window of opportunity
 - Can assess concepts and doctrine and medical response
Time to onset and duration of symptoms

- Modelling the time to onset of symptoms can allow realistic training scenarios to be run
 - Commanders do not discover covert biological release until medical surveillance triggers
 - Speed of response then determines the effectiveness of treatment
 - Allows investigation of effect on operational outcome
Contact Hazards

- Both liquid and vapour hazards
- Data available from Porton Man
 - Helps drive research on future clothing
Operational Effects

- The Virtual Battlespace predicts the impact of CBRN on personnel, equipment and terrain
- Drive to determine the effect of CBRN on the operation & campaign
- In general, this will be done by linking or inputting to appropriate high-level modelling tools
 - This can include both simulations and wargames
 - Physical link was investigated to UK WISE (formation level simulation)
Operational Effects

- Initial focus on sea ports
- Using CBR Virtual Battlespace (CBVB) to determine effects of CBR attacks
 - Casualties
 - Contamination
- 17th Port & Maritime Squadron will advise on work arounds
- Quantify effects on logistics chain using the Dstl Marflow model for EDPI
Effect of CBRN on Peace Support

• Aim – to develop capability to use CBVB to quantify effects of CBRN on Peace Support Operations (PSOs)
• Existing Dstl computer assisted wargame PSOM determines outcome of PSO
 – CBVB can determine casualties and contamination as input to PSOM
 – This then impacts on all members of the game
 – Can run scenarios with and without CBRN for comparison
Impact on Operational Outcome

• The Virtual Battlespace will be used to provide input for table top wargames
• Model dispersion of covert biological attack
 – Casualty chain will provide time to onset of symptoms for all exposed individuals
 – Commander will start to see units report illness
 – Medical response determines combat effectiveness
Conclusions

• A new casualty model chain has been developed
 – This accounts for
 • Respirator and suit
 • Medical countermeasures
 • Time to onset of symptoms and efficacy of MCMs
• The casualty models allow, in combination with other tools, for the operational effects of CBRN to be determined
• This provides invaluable pre-operational planning and training opportunities