

A Bayesian Approach for Estimating Outbreak Characteristics from Patient Data

Abstract # 4469

J. Ray, Y. M. Marzouk, M. Kraus and P. Fast

jairay@ca.sandia.gov

Sandia National Laboratories, Livermore CA, NORAD-NORTHCOM, Colorado Springs, CO Lawrence Livermore National Laboratory, Livermore, CA

Problem and motivation

- Consider a bioattack
 - Atmospheric release of an aerosolized pathogen
 - Not caught on sensors
 - Not terribly big O(10³) infected people
 - First intimation : successful diagnosis of an infected individual
- The technical challenge
 - Infer (τ, N, <D>)
 - Inputs: $\{t_i, n_i\}$, $i = 1 \dots M$, time series of new symptomatics every day / every 6 hrs.
- Restrictions
 - Can only use 3-4 days of data, past 1st diagnosis i.e. M is small
 - Quantify uncertainty due to incomplete observation / limited data
 - Noise stochastic data
 - Expect model errors i.e. model (used for inference) is approximate

Methodology

- Research Challenge
 - Little prior work 2 published papers on the general topic
 - No contagious diseases, simplified models for non-contagious ones
 - All recent publications (oldest is 2004)
- Bayesian Inference
 - Likelihood Λ of observing a {t_i, n_i}, sequence given a (τ , N, <D>) attack can be analytically derived [1]
 - Exploits the dose-dependent incubation period distribution of a disease

 $P(N,\tau,\langle D\rangle | \{t_i,n_i\}) \propto \Lambda(\{t_i,n_i\} | N,\tau,\langle D\rangle) \pi_N(N) \pi_\tau(\tau) \pi_D(\langle D\rangle)$

- Simulated aerosol attacks to generate data
 - Assume a city with a generic population distribution
 - Lay down a plume, infect people with different dosages
 - Dose dependent anthrax incubation period models [2; stochastic !]
 - Sources of errors noise, model errors, incomplete observation

Also invert the Sverdlovsk anthrax incident of 1979

- 1. Ray et al, Sandia Technical. Report., SAND2006-1492
- 2. Wilkening, PNAS, 103(20):7589-7594, May 2006.

Anthrax incubation period models

- Spores are subjected to competing processes
 - Clearance by immune system and germination into vegetative cells (rates obtained from non-human primate expts.)
 - PDF for time to germination (PDF #1)
- Vegetative cells reproduce at various rates (random variable)
- A threshold number of vegetative cells triggers symptoms
- Time from germination to symptoms, s, has a log-normal distribution (PDF #2)
- Convolution of PDF # 1 and PDF #2 gives incubation period distribution
- Parameters calculated from non-human primate experiments and Sverdlovsk, 1979.

Attack and inference models

Check No. 1 – Ideal case

- Does the method work in the ideal case?
- Approach :
 - Simulate 2 "ideal" attacks
 - Case B : 100 infected people
 - Case E : 10,000 infected people
 - Every infected person receives a dose of 100 spores
 - The disease progresses as per the blue model
 - Collect observations (# of symptomatic people) over 6-hr intervals
 - Inference as per blue mode too
 - No model errors !
 - Infer characteristics of attack based on 3-5 days of data
- Discrepancy between characterization and simulation due to:
 - Noise in the observations
 - Incomplete observation

Inference of size of attack

Case B : N = 100, τ = -2.25, log₁₀(D) = 2 Case E : N = 10,000, τ = -1.0, log₁₀(D) = 2

Inference of time of attack

Case B : N = 100, τ = -2.25, log₁₀(D) = 2

Case E : N = 10,000, τ = -1.0, log₁₀(D) = 2

Inference of dosage received during attack

A spectacular failure

- Inferring with partial observations can lead to spectacular failures
- Time series : {2, 369, 938, 1102, **958**}

Laboratories

Why?

Synopsis of the first check

- Given ideal case (accurate model and uniform dose), the inverse problem
 - Reliably infers size and time
 - Dosage is hard for small attacks
 - Large attacks are easier to infer
 - Characterizations can go wrong when based on incomplete observations, *but....*
 - Always recovers to correct one when more data becomes available.
- The method is mathematically consistent, but....
- Is it useful / applicable in non-ideal cases?

Simulated attack example

х

 Simulated attack - Case: N = 453, t = -0.75, 5 $log_{10}(<D>) = 4.23$ - Time series: {1,36,57,55,56} 4.5 log₁₀(Dose) [spores] 700 600 ed easo 8000 Number of infected 6000 3.5 Σ 4000 100000 50000 Dose З 0.2 0.4 0.6 0.8 0 2000 Cumulative fraction of population 6000 2000 4000 8000 10000

Comparison of inferred time

Comparison of inferred size

Comparison of inferred dosage

Sverdlovsk,1979

- Suspected atmospheric release of weapon-grade anthrax formulation from a military compound
 - Estimated date : April 2nd, 1979.
 - First symptomatic: April 4th, 1979
 - Estimated number of infected people: 75 ; 70 died
- Challenges
 - Small size
 - Reconstructed data
 - Low dose; estimated dose per person:
 - 9 spores (Meselson, Science, 1994, using Glassman's numbers)
 - 1-10 spores (Wilkening, PNAS, 103(20), 2006)
 - Effect of prophylaxis (initiated April 12th, 1979)
 - Vaccination (started : April 15th, 1979 (approx))

Sverdlovsk, 1979 - Time of infection

Sverdlovsk, 1979 – Size of infected population

Sverdlovsk, 1979 – Dosage

Conclusions

- We have
 - A rigorous Bayesian formulation to characterize bioterrorist attacks (anthrax)
 - Can be extended to smallpox, plague and other disease with a symptomatic contagious period.
- We need, in short order,
 - To bring in a spatial component into the inverse problem,
 - Ditto, contagious diseases
- Ultimately, need to design a risk-based response plan
 - Characterization not very useful if the cavalry rides in every time someone sneezes.
- More Information :
 - Ray et al, "A Bayesian method for characterizing distributed microreleases", Sandia Technical Report, SAND2006-7568, Printed December 2006. Unclassified, unlimited release.

