Use of a Synthetic Environment to Support Acquisition

Deb Fish, Alex Hill*, Neil Bowman, David Brook and Chris Cooper

Defence Science and Technology Laboratory, UK
* Defence Science and Technology Organisation, AUS

© Crown Copyright 2007. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.
Introduction

• There is a growing use of synthetic environments to augment laboratory and field experiments that support the acquisition of improved military capability

• The synthetic environments can be used in several ways
 – To make the initial business case for a new acquisition program or to identify new lines of development
 – To shape the research program
 – To test and evaluate equipment

• Dstl’s Virtual Battlespace has been used to support the acquisition program in areas including
 – Biological area detection
 – Low-burden protective clothing
What is the Virtual Battlespace?

- A synthetic environment including (some under development)
 - State-of-the-art dispersion models (UDM & SCIPUFF)
 - Models of CBR defence system (detection, protection, MCMs)
 - Representation of movement of entities (aircraft, army units)
 - Links to combat & facility models (WISE, OneSAF, STAFFS)
 - Multiple run controller
 - Wargaming mode
The Virtual Battlespace Models

- Dispersion Modelling
 - CBR sources and hazard plumes (weapons, IEDs, RDDs, TICs & TIMs)
 - Urban and Rural (SCIPuff & UDM)
 - Concentration Realisation

- Meteorology
 - Terrain
 - Local Wind Turbulence
 - Sea Breeze

- Military Units/Personnel
 - Effects (casualties)
 - Inhalation & Contact Hazard (liquid pickup)
 - Medical Countermeasures
 - IPE
 - Physiological Burden
 - Aggregation
 - Value of Information

- Detectors
 - Simple (threshold)
 - Generic
 - Specific
 - Standoff
 - Biological Background
 - Single & Network Alarms

- Modes of Use
 - Wargaming
 - Assessment

User Interface
Multiple Run Controller and Data Analyser
Modelling Framework
Geographical & Environmental Data
CBRN Static Data
Model X
Model Y
Model Z

30 March 2007
© Dstl 2007

UK UNCLASSIFIED
Biological Area Detection

- Previous work on acquiring the Integrated Sensor Management System
- Now a soft OA workshop study will define the concepts of use for an area detection capability
- This will quantify capability provided by networks of generic, specific and stand-off detectors in the CBVB
- Two main aims of the work:
 - Guide the research programme by estimating the performance of current and planned detectors
 - Allow stakeholders to make informed decisions by demonstrating what is and isn’t feasible
Integrated Sensor Management System (ISMS)

• Dstl supported the Defence Procurement Agency’s assessment of systems developed by industry
 – Field trials expensive; detectors not available

• Therefore the assessment carried out in the Virtual Battlespace
 – Realistic simulation of biological background & turbulent, meandering plumes
Modelling

- **Meander turbulence model** linked with UDM to provide a simulation of meandering plumes
 - required for realistic stimulation of detectors etc.
- **Biological background model** developed
 - based on field data
- **Generic biological detector models** developed
 - include measurement noise and sampling noise
Outcome

- Successful study
 - Scored systems objectively
 - Guided number of sensors required
 - Assessed performance in difficult environments (rural, urban)
Sensor Networking

- Last year looked at networking WIBS1 sensors using GARCH
- WIBS1 network not sensitive enough but GARCH improved performance
- Plan to extend to other sensors and evaluate new and existing network fusion algorithms in the CBVB
Task 1 – Improve ISMS Network Fusion

- ISMS uses the Biral VeroTect generic sensor & very simple network fusion algorithms
- GARCH network fusion algorithm shown to be effective on WIBS1
- Compare effectiveness of ISMS algorithm and GARCH against model of VeroTect
- Results to feed into ISMS incremental update in March ‘07
Task 2 – Find Optimal Generic Detector

- Lots of different generic detector prototypes
- How much size, shape and fluorescence information before we approach maximum performance of a generic detector?
Task 2 – Find Optimal Generic Detector

- Size information important
- Fluorescence spectra contain 2-3 pieces of information
- Bulk fluorescence offers little discrimination – need fluorescence on a particle basis
- Crude shape information required (liquid spheres)
Aircraft & Aircrew CBRN Survive To Operate

• A large programme to procure CBR protective equipment for aircraft & aircrew

• OA used to determine
 – Is AACSTO necessary?
 – What air capability does AACSTO need to maintain?
 – What hazard levels are involved in air operations?
 – What is the burden of AACSTO on aircrew?
AACSTO – Phase 1 - 3

• Phase 1 - Complete
 – Review of existing work undertaken across MOD
 – Concluded that no work tested against comparable threats to those currently faced

• Phase 2 - Ongoing
 – Identify threat scenarios and use of CBRN materials
 – Determine the aircraft involved in these operations and their corresponding missions
 – Identify the concepts & doctrine used to mitigate the use of CBRN

• Phase 3 - Ongoing
 – Series of war-games and workshops to determine the areas in which AACSTO is most necessary
AACSTO - Phase 4

• Two main goals:
 – Quantify the CBR challenge that aircraft and aircrew may be exposed to
 – Determine the thermal load placed upon aircrew and ground-crew by a range of protective ensembles

• We use the aircraft, missions and threat scenarios that are coming out of Phase 2 (running in parallel)
The CBR Virtual Battlespace (CBVB)

- The CBVB is used for the modelling in Phase 4
- New models have been added to the CBVB as part of this work
 - Airframe Model
 - Heat Strain Model
 - Protection Model
 - Radiological Post Processor
Task 1 – Draw up Mission Profiles

- Mission Profiles will include
 - Activity level (Watts)
 - Waypoints that describe route taken (either absolute or offset via velocity and start point \((x,y,z,t)\))
 - Type of clothing represented as a protection factor and thermal and vapour resistances
 - Local environmental conditions, including temperature, winds & stability

- Take into account different phases:
 - Aircrew at rest on airbase
 - Transference to air platform
 - Take off
 - Level flight at representative height
 - Landing
Task 2 – Safe Core Temperature

- Do mission profiles from Task 1 result in safe core temperatures?
- The Heat Strain Model
 - Based on US SCENARIO model, but improved
 - Now passed V&V testing
 - Is being compared against other models
 - USARIEM model
 - DSTO Werner/Lotens model
 - QinetiQ model
 - Also compared against experimental data
Task 2 – Safe Core Temperature

• The Airframe Model
 – Estimates the environmental conditions inside aircraft (radiant and ambient temperature, humidity & wind-speed)
 – Based on lit search of past trial data & simple atmospheric physics
 – Now integrated into the CBVB

• CBVB can calculate the heat strain associated with current and prototype clothing ensembles
 – Drive future clothing research
Task 2 – Safe Core Temperature

<table>
<thead>
<tr>
<th>Time</th>
<th>Heart Rate (bpm)</th>
<th>Core Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:19:12</td>
<td>86</td>
<td>36.88</td>
</tr>
<tr>
<td>13:20:38</td>
<td>88</td>
<td>36.90</td>
</tr>
<tr>
<td>13:22:05</td>
<td>90</td>
<td>36.92</td>
</tr>
<tr>
<td>13:23:31</td>
<td>92</td>
<td>36.94</td>
</tr>
<tr>
<td>13:24:58</td>
<td>94</td>
<td>36.96</td>
</tr>
<tr>
<td>13:26:24</td>
<td>96</td>
<td>36.98</td>
</tr>
<tr>
<td>13:27:50</td>
<td>98</td>
<td>37.00</td>
</tr>
<tr>
<td>13:29:17</td>
<td>100</td>
<td>36.98</td>
</tr>
</tbody>
</table>

- Outside Airframe
- Flying to Target
- Engaging Enemy
- Returning to LZ
- Running from LZ Away From Hazard
- Resting
Task 3 – Determine CBR Challenge

• The Protection Model
 – New model to determine the protection factors provided by various types of aircraft now integrated into CBVB

• Predict the CBR hazard to the platforms at various times during the mission profiles:
 – Given that a CBR event is intercepted, determine if a high or low burden protection option is required, and when during the mission it is needed

• Mission profiles from Task 1 against current threat scenarios
 – Use of agent, weapon system and target will be derived from CBR planning scenario development work
 – Meteorological data specific to the location

• Challenge model runs completed for helicopters – fast jet and fixed wing runs underway.
Conclusions

• The Virtual Battlespace has been successfully used to support the acquisition process
 – Used to both test and evaluate existing capability and drive research in new areas
 – Significantly improved capability (includes casualty chain, effects on operations)
 – Widely used (2004-05 – 1 study; 2006-07 – 5 studies)
 • Every study improves VB, benefiting subsequent studies
 – International
 • New TTCP CBR Group AG
 • DSTO involvement