

ROBERT WOOD JOHNSON MEDICAL SCHOOL

University of Medicine & Dentistry of New Jersey

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu

Prospective Funding by DTRA/JSTO-CBD

etc TC environmental bioinformatics and Computational Toxicology Center

A State-wide, Regional and National Resource

< www.ebCTC.org >

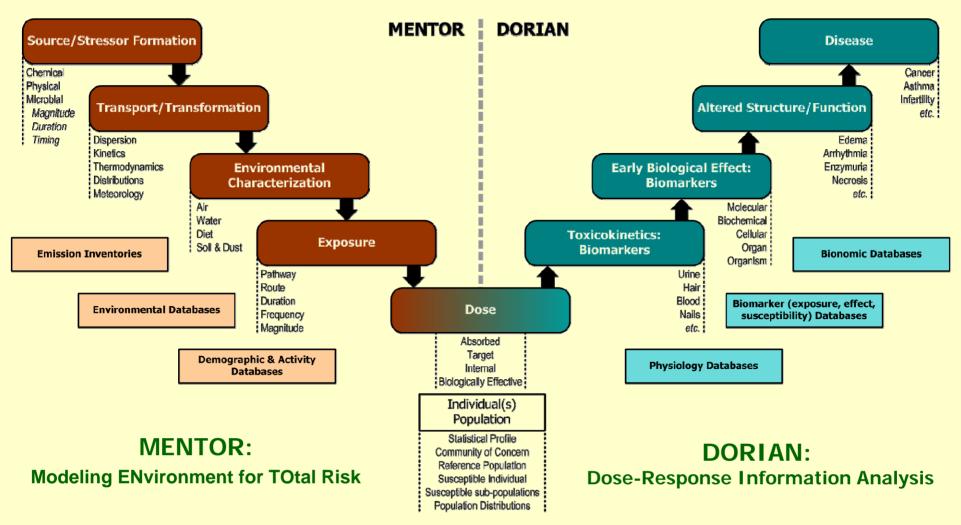
Funded with support from the U.S. EPA

Jan 2007

Consortium Members

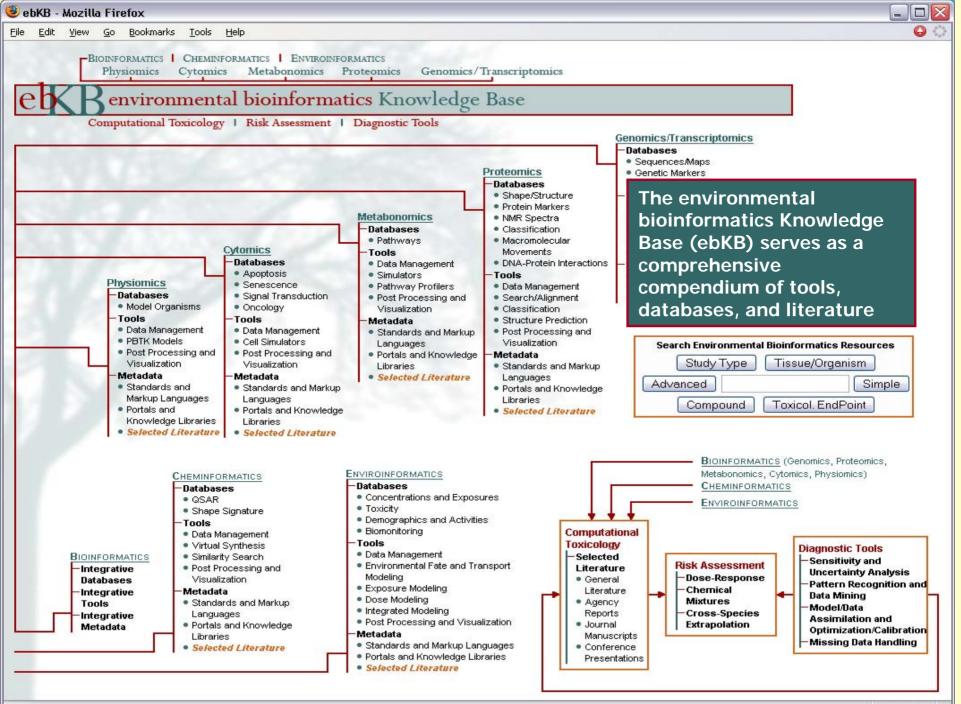
ROBERT WOOD JOHNSON Medical School

University of Medicine & Dentistry of New Jersey

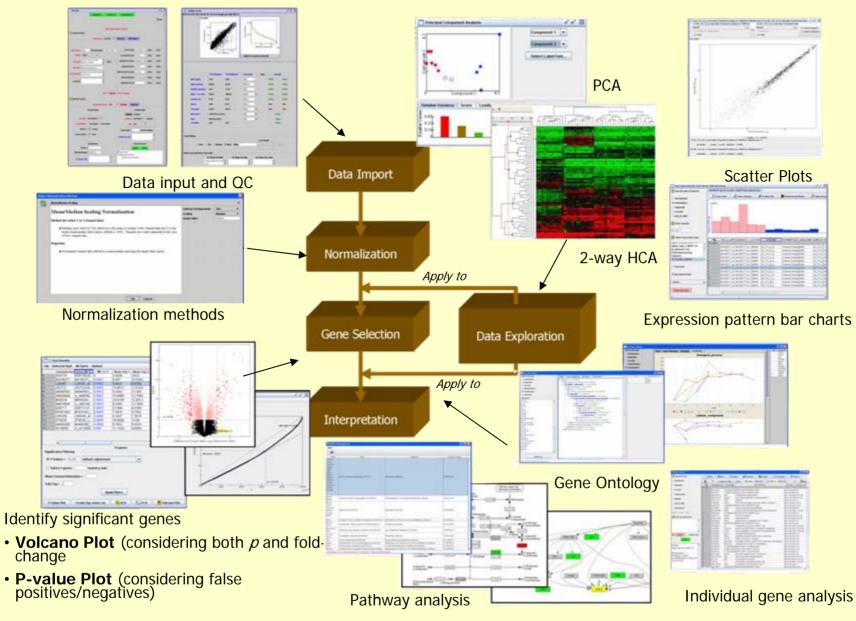


Major Research Thrusts

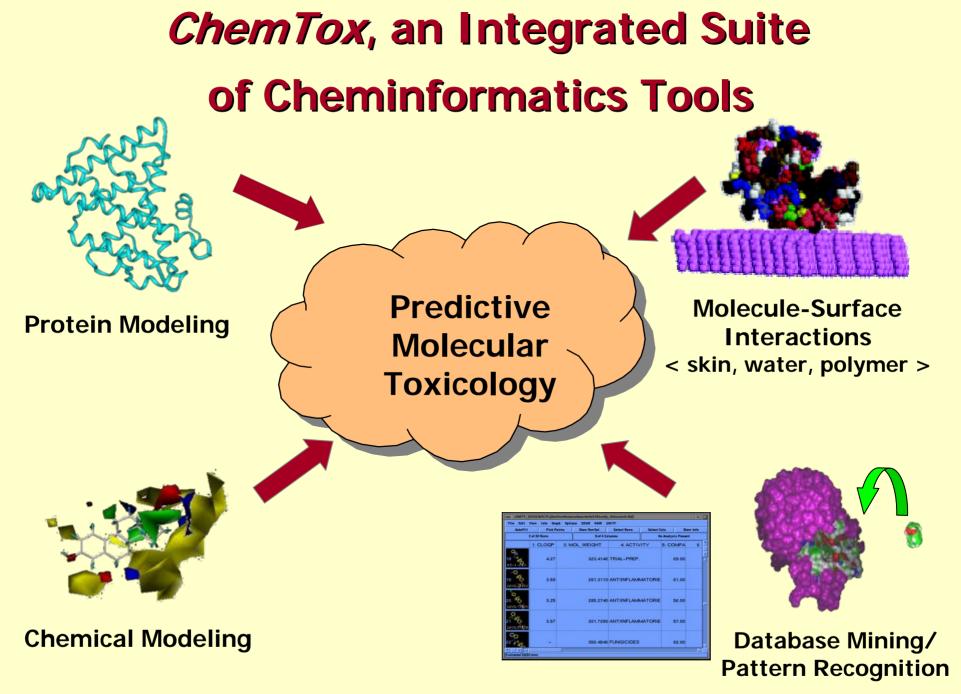
- MENTOR-DORIAN Computational Toxicology System that spans the Source->Dose->Outcome continuum
- The Environmental Bioinformatics Knowledge Base (ebKB: www.ebCTC.org)
- ArrayTrack: toxicological bioinformatics platform to process genomics, proteomics and metabonomics data
- Hepatocyte Metabolic Model for Xenobiotics
- ChemTox, a suite of chem-informatics tools for toxicant identification & characterization


Jan 2007

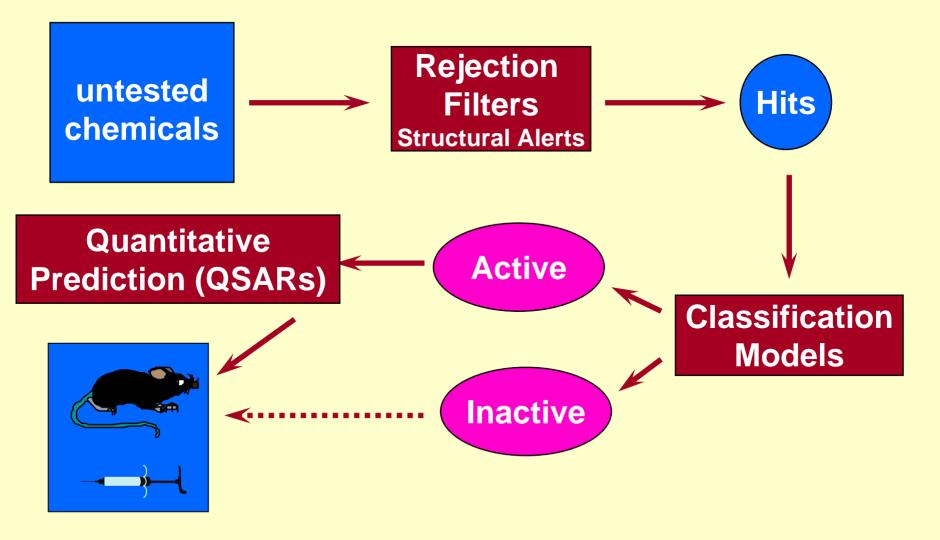
MENTOR & DORIAN Address the Source-to-Outcome Continuum


Adapted from chart by R. Calderon, USEPA/NHEERL, 2003

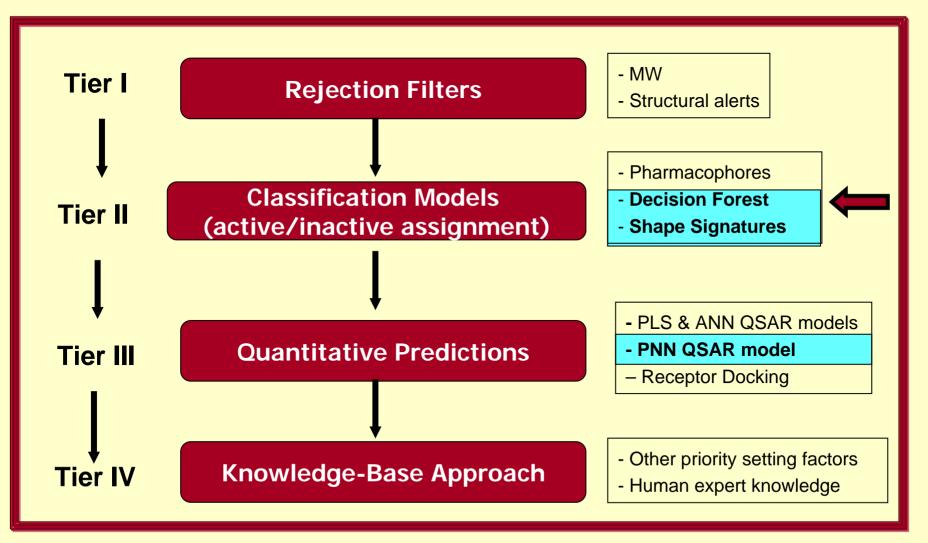
Jan 2007


Done

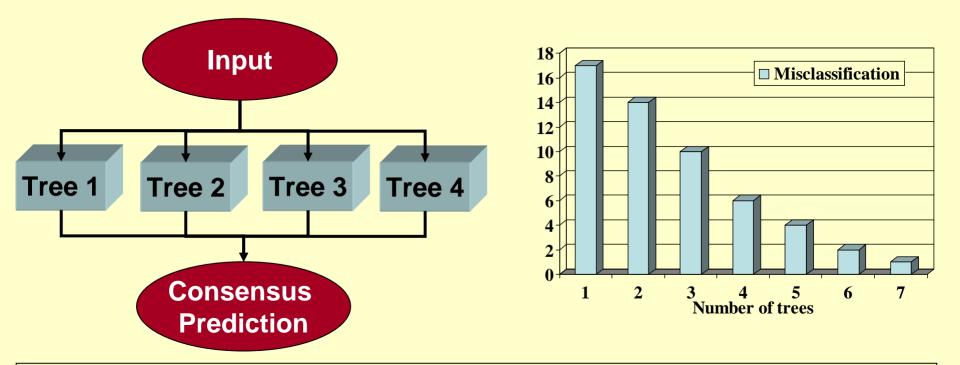
ArrayTrack Suite of Bioinformatics Tools


CBIS Conference

Jan 2007


Jan 2007

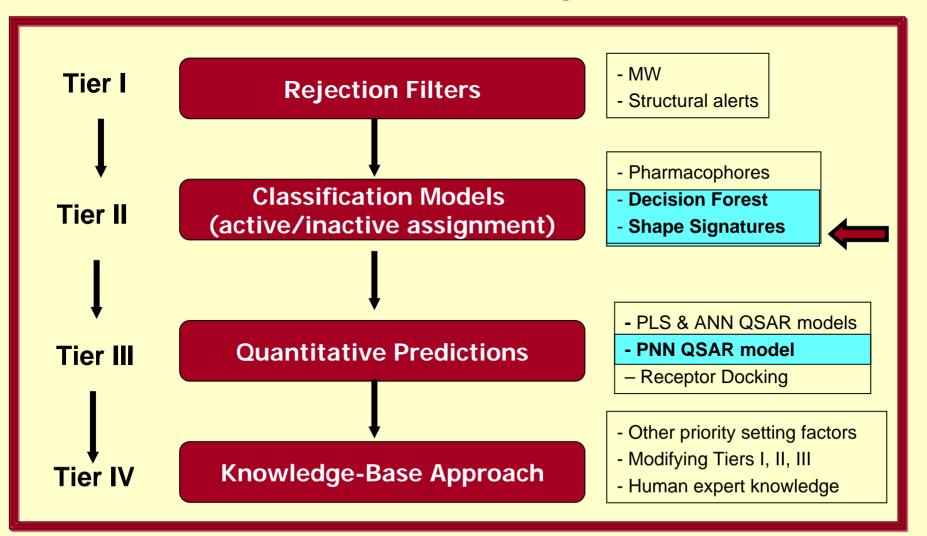
Computational Screening Paradigm - Priority Setting -


Hierarchical Screening Framework

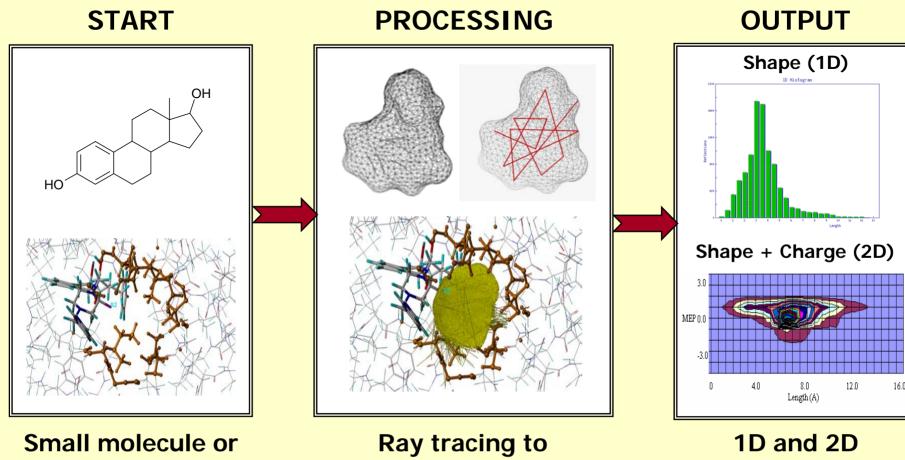
- addresses the need to minimize *false negatives* and *uncertainties*
- recognizes that no single computational model is adequate

Decision Forest

- Improved classification by combining independent Decision Tree models -


Key Features

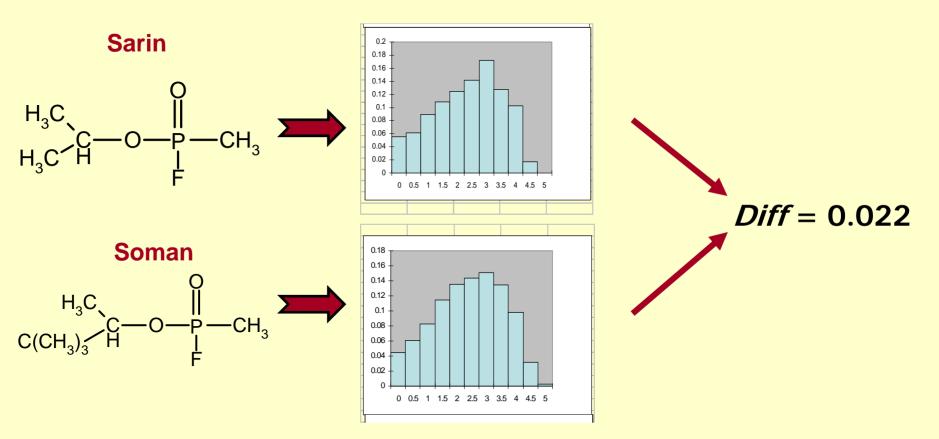
- Combining several independent yet predictive trees reduces misclassification
- DF structure permits assessment of prediction confidence
- Each tree consists of simple 'If-Then' branches, hence the DF is extremely fast


Jan 2007

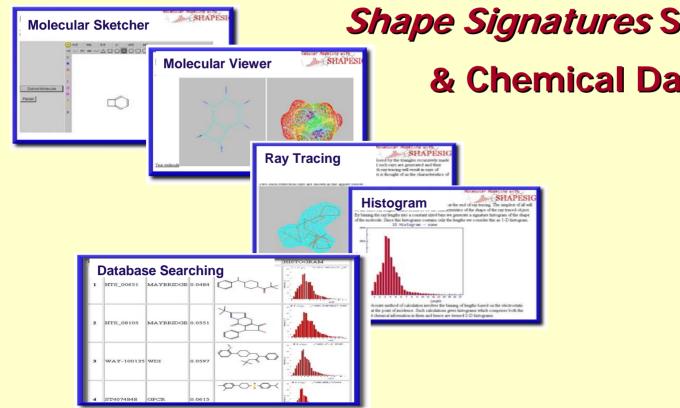
Schematic of Hierarchical Framework

- addresses the need to minimize false negatives and uncertainties -

Shape Signatures Tool


Protein binding pocket

generate the raw data


Shape Signatures

Shape Signatures Tool

molecules are compared by subtracting their histograms

Small Diff value means that two molecules have similar shape and polarity

Shape Signatures Software Tool

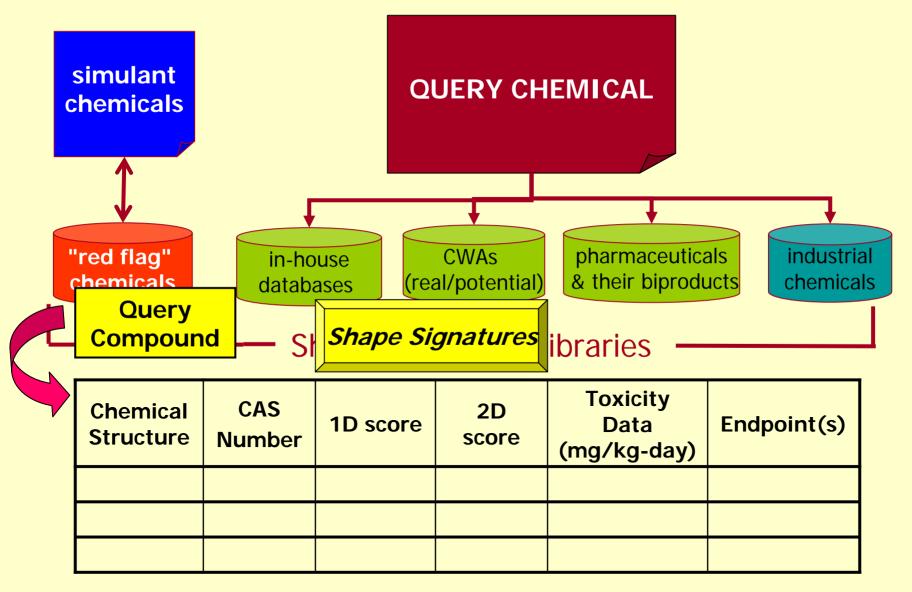
& Chemical Databases

Searchable Shape Signatures Databases

- 3+ million commercially available organic compounds
- 40,000 Natural Products
- Hazardous Chemicals (pesticides, nerve agents, mustards, psychotropic agents, other real or potential CWAs, TICs)
- PDB-extracted ligands

Chemical → Target Protein → Mechanisms

Protein Data Bank (PDB): World Repository of ~35,000 Protein-Ligand Crystal Structures (http://www.rcsb.org/pdb/)

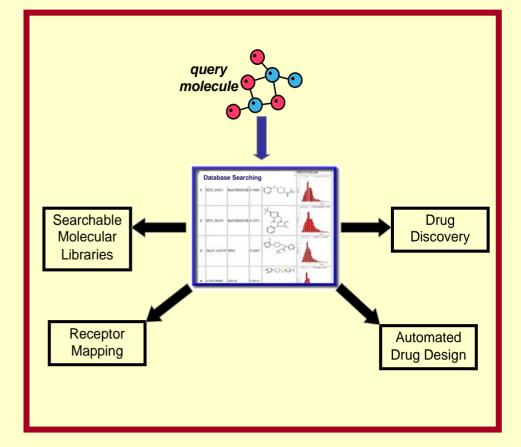


Jan 2007

Identifying Problem Chemicals

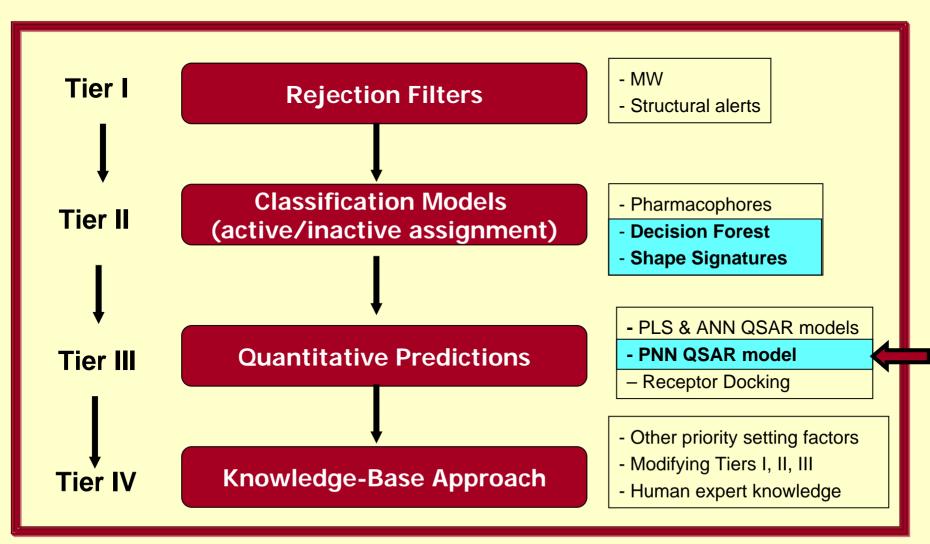
Shape Signatures - Key Features -

Fast


screens large databases in secs

Extensible

works with any kind or number of molecular species


Portable works on any platform

Versatile broad utility, multiple databases

Schematic of Hierarchical Framework

- addresses the need to minimize *false negatives* and *uncertainties* -

Building QSAR Models

target property ∞ (molecular descriptors) $Y = f(X_i)$

Types of Molecular Descriptors

Туре	Example
Constitutional	Molecular composition (M _w , # of atoms/bonds, # of H-bond donors/acceptors)
Topological	2-D structural formula (Kier-Hall indices, extent of branching)
Geometrical	3-D structure of molecule (molecular volume, solvent accessible surface area, polar and non-polar surface area)
Electrostatic	Charge distribution (atomic partial charges, electronegativities)
Quantum Mechanical	Electronic structure (HOMO-LUMO energies, band gap, dipole moment)

Jan 2007

Comparison of Regression Methods

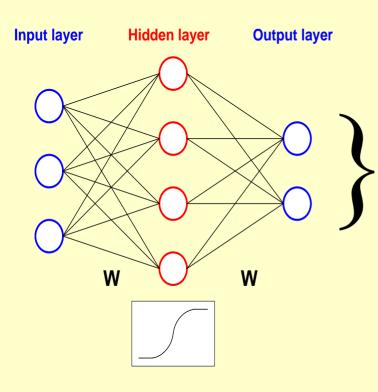
Desirable Features of Methods and Models

- predictions should be fast
- produces linear or non-linear models (i.e., relationship between obs toxicities and calc'd molecular features may be non-linear)
- models should be physically meaningful, interpretable, and assume parametric form

Method	Speed	Linear Models?	Nonlinear Models?	Regression Equation?	Easy to Interpret?
PLS/MVR	**	Yes	No	Yes	Yes
ANN	*	Yes	Yes	No	Yes
PNN	* *	Yes	Yes	Yes	Yes

Jan 2007

Polynomial Neural Network (PNN)


combines best features of linear multivariate models (parametric form) and ANN models (nonlinearity) -

Polynomial Neural Network

1 10.00000 0.500000 1.000000 5.000000 3158500 8.483800 920.00000 28.00000 28.00000 3 10.000000 0.500000 1.000000 5.000000 31.58500 8.483800 920.00000 28.00000 28.00000 3 10.000000 0.500000 1.000000 5.00000 31.58500 8.483800 920.00000 32.00000 32.00000 5 10.000000 0.500000 1.000000 5.00000 31.47200 87.79800 112.00000 38.00000) 💕) = 😭	h?											
1 10.00000 0.500000 1.000000 5.000000 3.158500 8.48300 920.00000 28.00000 28.00000 28.00000 28.00000 3.00000 1.00000 5.00000 3.158500 8.48300 920.00000 28.00000 3.00000 1.00000 5.00000 3.158500 8.48300 920.00000 28.00000 3.00000 4.00	12	X #	5 CX 🗗		2 🖾 😥								G	rid View	•
2 10.00000 0.500000 1.000000 \$500000 3.056800 3.18400 698.00000 28.00000 3.00000 3 10.00000 0.500000 1.000000 \$500000 3.056800 84.4800 898.000000 3.00000 3.00000 5 10.00000 0.500000 1.000000 \$500000 3.14720 8.77090 1126.00000 \$500000 1.00000 \$500000 3.14720 8.77090 1126.00000 \$500000		diameter	petitjean	petitjeanSC	radius	VDistEq	VDistMa	weinerPath	weinerPol	a_aro	a_count	a_IC	a_ICM	a_nH	b_
2 10000000 0.000000 3.000000 0.000000 20.00000 20.00000 4 10.000000 0.500000 1.000000 5.000000 3.44800 844000 84.00000 34.00000 5 10.000000 5.000000 3.14720 8.77900 1126.000000 4.000000 4.000000 7 10.00000 0.500000 1.00000 5.000000 3.027000 9.891000 2502.00000 4.000000 8 11.000000 0.500000 3.027000 9.891000 2502.00000 6.000000 4.000000 10 11.00000 0.454500 0.833300 6.000000 3.22700 9.89100 2502.00000 6.000000 10 11.00000 0.454500 0.833300 6.000000 3.22700 1680.00000 4.000000 4.000000 12 10.00000 0.500000 1.000000 5.00000 3.22700 1288100 24.00000 34.00000 13 12.000000 0.500000 1.000000 5.00000 3.27700 32.00000 34.00000 34.00000 14 10.000000 0.5000000<		10.000000	0.500000	1.000000	5.000000	3.159500	8.483900	920.000000		Destant					
4 10.00000 0.500000 1.000000 \$ 000000 3.088000 3.44400 894.00000 3.400000 3.400000 5 10.000000 0.500000 1.000000 \$ 000000 3.147200 8.70900 1126.000000 3.00000 3.00000 3.400000 3.400000 3.400000 3.400000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000	2	10.000000	0.500000	1.000000	5.000000	3.058800	8.188400	698.000000	28.000000	Project Se	ettings				? ×
4 1000000 0.500000 1,000000 5,00000 344000 3400000 3400000 5 10,00000 0.500000 1,000000 5,00000 347000 15200000 3600000 4 Applied criteria type: Appled criteria type: Appled criteria type: 40 11 11,00000 0.500000 1,00000 5,00000 3,25100 9,86100 2426,00000 46,00000 40 Maximal terms number: 50 11 11,00000 0.454500 0.833300 6,00000 3,22100 9,86100 2426,00000 46,00000 40,0000 40,00000 40	3			Concernation of the second						Settings]	Robust Crite	in l			
6 10.00000 0.500000 1.000000 \$ 200000 3.016800 9.703700 2150.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 3.02700 9.81100 250.000000 6.000000 6.000000 3.02700 9.81100 250.000000 6.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000	- C		-							voxango	Hobust Cille	iia			1
6 1000000 0.00000 1000000 \$00000 1000000 \$800000 \$800000 \$800000 40.00000 \$800000 40.00000 \$800000 49.000000 49.00000 49.000000 49.000000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 49.000000 50.00000 40.000000 50.00000 40.000000 50.00000 40.000000 50.00000 40.000000 50.00000 50.00000 40.000000 50.00000	-									Tun	e of regression	equation:	Linear	-	
8 11.00000 0.454500 0.833300 6.00000 3.20200 9.461900 2074.00000 49.00000 49.00000 9 11.00000 0.454500 0.833300 6.00000 3.225100 96.64800 242.000000 55.00000 10 11.00000 0.454500 0.833300 6.00000 3.225100 96.64800 242.000000 55.00000 11 11.00000 0.454500 0.833300 6.00000 3.225100 9.048100 242.000000 50.00000 12 10.00000 0.500000 1.000000 5.00000 3.151100 8.419300 914.000000 36.000000 36.000000 14 12.00000 0.500000 1.000000 5.000000 3.240000 9.200000 32.000000 15 10.00000 5.000000 3.344000 9.35320 771.00000 32.000000 15 10.000000 5.000000 3.240000 9.200000 32.00000 40.000000 15 10.000000 5.000000 3.040000 9.35320 771.00000 32.00000 16 10.000000 5.000000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>and the second se</td><td>136</td><td>Joodia</td><td></td><td>Trunod</td><td></td><td></td></t<>									and the second se	136	Joodia		Trunod		
a 11000000 0.454500 0.83300 6.000000 3.220300 4800000 10 1100000 0.454500 0.833300 6.000000 3.220300 48000000 45000000 110 111 10.00000 0.454500 0.833300 6.000000 3.221300 9.252000 1688.000000 45.000000 111 11.000000 0.454500 0.833300 6.000000 3.261700 9.361800 1680.000000 45.000000 12 10.00000 0.500000 1.000000 5.000000 3.261700 9.361800 1880.00000 45.000000 13 12.000000 0.500000 1.000000 5.000000 3.26900 8.65200 942.000000 3.200000 14 12.000000 0.500000 1.000000 5.000000 3.26900 8.65200 97.000000 2.000000 15 10.00000 5.000000 3.040000 8.65200 97.000000 2.000000 1.000000 16 0.00000 5.000000 3.040000 8.65200 97.000000 2.000000 1.000000 16 0.00000 5.00										Ann	lied criteria tun	er Bss		•	
11.00000 0.454500 0.833300 6.00000 3.22330 9.25200 1688.00000 45.00000 12 11.00000 0.454500 0.833300 6.00000 3.261700 9.961800 180.00000 47.00000 12 12.000000 0.500000 1.000000 6.000000 3.14500 8.74700 120.00000 3.00000 14 12.000000 0.500000 1.000000 5.000000 3.20900 3.46800 942.000000 3.00000 15 10.000000 0.500000 3.040000 8.35200 771.000000 3.209000 15 10.000000 0.500000 3.040000 8.35200 771.000000 3.00000 16 0.00000 0.500000 3.040000 8.35200 771.000000 3.00000 16 0.00000 0.00000 3.040000 8.35200 771.000000 3.00000 16 0.00000 0.00000 3.040000 8.35200 771.000000 3.00000 16 0.00000 0.00000 3.040000 8.35200 771.000000 3.00000 16 0.00000										CAR	nes sinolia (yp	- Juse			
100 11000000 0.454500 0.83300 6.000000 3.22300 9.324800 1880.00000 4.000000 111 11000000 0.454500 0.83300 6.000000 3.24700 19.38100 1880.00000 4.000000 121 10.00000 0.500000 1.000000 5.00000 3.151100 8.481900 91.400000 36.00000 1.00000 1.00000 1.00000 1.000000 3.00000 1.000000 3.00000 1.000000 1.000000 1.000000 3.00000 3.000000 3.000000 3.000000 3.000000 3.000000 3.00000 <td< td=""><td></td><td></td><td></td><td>Contraction of the</td><td></td><td></td><td>5</td><td></td><td></td><td>Mat</td><td>ximal terms nun</td><td>nber in equatio</td><td>ns: 40</td><td></td><td></td></td<>				Contraction of the			5			Mat	ximal terms nun	nber in equatio	ns: 40		
12 10.000000 0.500000 1.000000 5.000000 3.151100 8.481900 914.000000 3.400000 3.400000 13 12.000000 0.500000 1.000000 6.000000 3.24500 84.200000 3.00000 3.00000 14 12.000000 0.500000 1.000000 6.000000 3.24500 84.200000 32.00000 3.00000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, ind.</td> <td>and the rest of the second sec</td> <td></td> <td></td> <td>-</td> <td></td>										, ind.	and the rest of the second sec			-	
1 12,000000 0.500000 1,000000 6,000000 3,314500 8,747000 1206,000000 36,00000 36,00000 1,000000 6,000000 3,209000 8,468200 942,000000 32,00000 1,000000 6,000000 3,209000 32,00000	_									Mat	vimal iterations	number	50	*	
It 12.000000 0.500000 1.000000 32.00000 32.00000 32.00000 IS 10.000000 0.500000 1.000000 5.000000 3.440000 8.353200 771.000000 32.000000 IS 0.000000 1.000000 5.000000 3.440000 8.353200 771.000000 32.000000 IS 0.000000 1.000000 2.000000 3.440000 8.353200 771.000000 32.000000 IS 0.000000 1.000000 2.000000 3.040000 8.353200 771.000000 32.000000 IS 0.000000 1.000000 2.000000 3.040000 8.353200 771.000000 32.000000 IS 0.000000 1.000000 2.000000 3.040000 9.00000 1.000000 1.000000 1.000000 IS 0.000000 3.000000 1.000000 3.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	_								and the second se	Ma	and recoulds	namber.	1.0		
ts 10.00000 0.500000 1.000000 3.00000 3.00000 3.00000 3.000000 3.000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.00000000	-										And a second second				
Image: second	-								and the second se	Mai	xinal number o	i saved model:	s. 3		
Image: Settings Rows number in test subset: 4 Settings DK Cancel Image: Settings Maximal equations: 40 Maximal equations degree: 3 3 Maximal iterations number is eased for robust coefficient estimation: 2											11 I. I. I.	-	1		
Settings DK Cancel Implayer Hitimiser Optiliser Type of regression equation: Linear equation Applied criteria type: RSS Maximal terms number in equations: 40 Maximal equations degree: 3 3 Maximal retrations number: 50 50 Maximal iterations number used for robust coefficient estimation: 2 2										Mar	ximal equations	degree:	2	1	
Settings DK Cancel Implayer Hitimiser Optiliser Type of regression equation: Linear equation Applied criteria type: RSS Maximal terms number in equations: 40 Maximal equations degree: 3 3 Maximal retrations number: 50 50 Maximal iterations number used for robust coefficient estimation: 2 2	X	a 🗉								-					
Intraction Cupution Applied criteria type: RSS Maximal terms number in equations: 40 Maximal equations degree: 3 Maximal equations number: 50 Maximal iterations number: 50 Maximal iterations number: 50							Rows number in test subset: 4 🚆								
Inputiese Hittinitye Outputiese Type of regression equation: Linear equation Applied criteria type: RSS Maximal terms number in equations: 40 Maximal equations degree: 3 Maximal equations number: 50 Maximal iterations number: 50	Settings							<u> </u>	1	ПK	Capcel	1 60	ply		
Applied riteria type: R53 Maximal equations degree: 3 Maximal iterations number: 50 Maximal iterations number: 50							octu	ings			<i></i>	OK	Cancer		PPY
Maximal terms number in equations: 40 Maximal equations degree: 3 Maximal number of saved models: 3 Maximal iterations number: 50 Maximal iterations number used for robust coefficient estimation: 2	Type of regression equation.									on					
Maximal equations degree: 3 Maximal number of saved models: 3 Maximal iterations number: 50 Maximal iterations number used for robust coefficient estimation: 2															
Maximal number of saved models: 3 Maximal iterations number: 50 Maximal iterations number used for robust coefficient estimation: 2							2.22								
Maximal iterations number: 50 Maximal iterations number used for robust coefficient estimation: 2															
Maximal iterations number used for robust coefficient estimation: 2							3	3							
								5	50						
Reduct a promotor using used for reduct coefficient estimation: 1.00	Maximal iterations number used for robust coefficient est							timation:	2						
W W Hobist parameter value used for robust coernisent estimation: 1.00	Robust parameter value used for robust coefficient estin							nation: .	1.00						
Total rows number in input sheet: 39					and the second se	AND DOGS									

- Produces linear or non-linear QSAR models in parametric form
- User control of model complexity
- Insensitive to irrelevant variables and outliers
- Yields predictive models, even for <u>sparse</u> or noisy data sets
- Trains rapidly, thus amenable to large data sets
- Automatically selects best models
- Customizable to fit user's needs

Polynomial Neural Network (PNN)

1) PNN generates parametric solutions of any desired order 'n":

Act. =
$$w_1(SA) + w_2(V) + w_3(\mu) + ...$$

Act. =
$$W_1(SA) + W_2(V)^2 + W_3(\mu)^3 + ...$$

Act. =
$$w_1(SA)^2 + w_2(V) + w_3(\mu)^2 + ...$$

Act. =
$$w_1(SA)^0 + w_2(V) + w_3(\mu)^2 + ...$$

Act. =
$$w_1(SA) + w_2(V)^2 + w_3(\mu)^2 + ...$$

2) PNN selects best solutions:

Act. =
$$w_1(SA) + w_2(V)^2 + w_3(\mu)^3 + ...$$

Act. =
$$w_1(SA) + w_2(V)^2 + w_3(\mu)^2 + ...$$

Thank You!

welshwj@umdnj.edu