Chemical Agent Fate

Transport Models for Evaporating and Non-Evaporating Sessile Drops in Porous Substrates

By:

H. K. Navaz, B. Markicevic, A. Zand, Y. Sikorski, M. Sanders

Kettering University Flint, Michigan

Chemical and Biological Information Systems

Our Mission

To create a system that can greatly enhance the ability to predict the outcome of a chemical attack event in terms of the existing level of an agent's concentration

Agent Fate Predictive System (AFPS)

Surface Evaporation Module

- Sessile drops
 - ✓ Non-permeable substrates
 - Small drops/large granules
 - Permeable substrates

Substrate Module

- Liquid transport
 - ✓ Porosity
 - ✓ Saturation permeability
 - ✓ Capillary pressure [f(s)]
 - Phase permeability [g(s)]
- Evaporation model
- Vapor transport
 - Effective diffusivity
- Chemical reaction
 Rate and mechanism
- Agent/surface interaction
 - Rate and mechanism

Experimental Module

- Finding physical properties (viscosity, density, surface tension, etc.)
- Helping to find the transport properties
 - Porosity
 - capillary pressure
 - Saturation permeability
 - Relative permeability
 - Effective diffusivity
 - Adsorption rates
 - Activation energy
 - Etc..
- Model validation

AFPS

- Predictive Input (AFPI)
- Averaged/Instantaneous

Agent Fate

- Wind speed
 Turbulence
- Temperature
- RH
- Average agent droplet size and distribution
- Substrate type

- Completed
- On-going
- Planned

Agent Fate Predictive Matrix (AFPM)

Variables

- Atmospheric
 - Wind speed
 - Wind turbulence intensity
 - Temperature
 - Relative Humidity (RH)
- Agent
 - Туре
 - Average drop size or size distribution
 - Average number of drops per unit surface area

Substrate

- Туре
 - □ Chemical composition
 - Properties (porosity, Saturation permeability, relative permeability, capillary pressure, agent's effective diffusion coefficient)

Function (s) [Information Needed]

 The amount of agent present (Instantaneous/Averaged/Targeted time)

Limitations

- Thousands of experiments and/or simulations are needed to sufficiently create a good system
- Stiff set
- Maintenance
- Updating

Agent Fate Predictive System (AFPS)

Agent Fate Predictive Tools (AFPT) – On Going

Tools

- Artificial Neural Network (ANN) is a computer program that is capable of learning patterns or relationships via training examples (Taken from AFPM). It resembles biological neural nets in two ways:
 - Knowledge is acquired by the network through a learning or training process
 - Knowledge is stored via inter-neuron connection strengths (weights)
- Can asymptotically find the minimum number of required input from the AFPM
- Can be updated for new data (as they may become available), by a simple re-training process

Agent Fate Predictive Matrix (AFPM)

Limitations Overcome

- Thousands of experiments and/or simulations are needed to sufficiently create a good system
- Stiff set
- Maintenance
- Updating

Surface Evaporation Module

- Model developed
- Model validated with wind tunnel data
- Model validated with outdoor data

- Model and experiments showed that the percentage of mass left is a general function of temperature and non-dimensional time regardless of the drop size. Length scale: $\left(\frac{V}{r^2}\right)^{-1}$, Time scale: $u^*\left(\frac{V}{r^2}\right)^{-1}$
- Model was used as a pilot methodology to verify the robustness of our overall approach (AFPI, AFPS, AFPM, and AFPT)

References:

Navaz, H. K., Chan, E., and N. Kehtarnavaz, "A Comprehensive Study of HD Sessile Droplet Evaporation on Impermeable, Non-Reacting Substrates," Presentation at the CBD November 2006, Hunt Valley, MD.,

To be submitted to the Journal of Hazardous Materials.

Model Development and Validation with Laboratory Data

HD on Glass, Wind Velocity = 3.66 m/s, D rop Size = 1 µL Air Temperature = 15°C, m=1.200mg

HD on Glass, Wind Velocity = 3.66 m/s, Drop Size = 1 µL Air Temperature = 15°C, m=1.264 mg

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 6 μL Air Temperature = 35°C, m=7.000mg

Model Validation with Outdoor Data - 2006

Model Validation with Outdoor Data - 2006

Evaporation Model Scalability

- Developed a robust system based on first principles and innovative methods for the Agent Fate Program
- Proved the robustness of the system by applying it to the evaporation of HD on glass
- Developed hybrid experimental and analytical methods to find the transport properties in a porous substrate
 - Capillary pressure
 - Relative permeability
- Addressed the scalability issue that assists us in developing the experimental methods
- Developed two analytical models for agent transport through a porous substrate

Acknowledgements

- The Air Force Research Laboratory, Human Effectiveness Directorate, Biosciences and Protection Division
- Wright-Patterson AFB, Ohio
- The US Army's Edgewood Chemical and Biological Center, Aberdeen Proving Ground
- Dr. James Savage
- Mr. William Kilpatrick
- Dr. Terrence D'Onofrio