Using Experimentation to Support Future Capability Needs: CB Effects in the JFCOM Urban Resolve Experiment

Ian Griffiths, Andrew Solman, Neil Dyer – Dstl
Doug Brain – RiskAware
Mark Biwer – Northrop Grumman
Lt Col Mike Wall – DTRA
Overview

• Aim of M&S
• Capability
 – Real World Representation
 – Hazard Prediction Concept Demonstrator
• Applications
 – Training – JVTSE
 – Experimentation – Urban Resolve
• Summary and future plans
Aims of M&S

- Concept demonstration
- Training
- Experimentation
 - Evaluating effect on campaigns
 - Requirements definition
 - Balance of investment
- Raising technology readiness
Dstl’s CBR M&S Capability

• The capability splits into two areas
 – Real-World Representation
 • Exists to stimulate Hazard Prediction Concept demonstrator and other systems
 – Hazard Prediction Concept Demonstrator
 • Allows demonstration and evaluation of emerging technologies
 • Exploration and clarification of requirements for future hazard prediction systems
Real-World Representation

- Sophisticated CBR modelling used to
 - Simulate realistic ground truth
 - Stimulate other systems
Real-World Representation

- The “Ground Truth” representation consists of the following elements
 - Chemical and Biological Simulator (CBSim)
 - Detector models
 - Ground-truth visualisation
CBSim

- CBSim provides real-time modelling capability
 - Urban dispersion
 - Instantaneous dispersion realisation
 - Terrain effects
 - Meander effects
 - Concentration realisation
 - Stimulation of detectors
 - Casualty calculations
CB Effects Modelling Capability

- Dispersion Modelling
 - 2D and 3D CBRN sources and hazard plumes
- Terrain
 - FACTS, Meander, Buildings
- Meteorology
- Value of Information

- Detectors
 - Chemical, Biological, Bio Background
- Casualty Chain Modelling
- Effects of Hazards
 - IPE
- Concentration Realisation
- Aggregated Entities

CB Effects Modelling Capability

Plug and Play Architecture

Realistic Terrain Detectors Casualty Chain Modelling Dispersion Modelling IPE Concentration Realisation Meteorology
Dispersion Modelling - The UDM

- Runs in
 - Real-time
 - Instantaneous mode
 - Different to ensemble hazard, e.g. HPAC, JEM
 - Gives a single realisation
- Uses updating wind input
CBR Plume Output

- Output of CB material plumes
 - Dosage
 - Deposition
 - Concentration
- Radiological material plumes
 - Cloud and ground shine
 - Energy deposited in tissues
 - Also inhaled dose

Ground shine 1 minute after a 190kg release of Cesium 137
Realistic Meteorology modelling

- Meander Model
- AERMET boundary layer model
- Empirical sea breeze model
- Linear model of flow over hills
- Slope flow model
Generating realistic time series

- Concentration of challenge at detector calculated by UDM driven by large scale meandering winds
- Concentration realisation agent used to generate realistic time series
 - Simulates turbulent variations in concentration within puff
- Particles then sampled from this time series with noise
Detector models

- Configurable chemical detector models
- Bar based detector
- Alarms at a threshold
- Challenged by realisation of concentration
Ground Truth Visualization

- 2D/3D representation
 - Buildings
 - Terrain
 - Dosage, concentration, effects contours
 - Puffs
 - Detectors/entities
- Visualiser can be distributed from CBSim calculation core
Hazard Prediction Concept Demonstrator

- The Concept Demonstrator consists of
 - SAFE Warning & Reporting, including STEM
 - Alternative Courses of Action Capability
 - REACT hand-held commander’s tool
 - Sensor Placement Operational Tool (SPOT)
SAFE Warning & Reporting

- Warning and Reporting system includes
 - Source Term Estimation
 - ATP-45 style templates
 - Ensemble Average Hazard prediction
Alternative Courses of Action Capability

- ACAT tool allows alternative routes around plume to be evaluated.
- Hazard provided by the W&R Concept Demonstrator
REACT hand-held commander’s tool

- Rapid Evaluation and Awareness Command Tool (REACT)
- Displays CBRN situational picture from W&R Concept Demonstrator on a PDA
- Allows observer messages to be send into W&R Concept Demonstrator
- Allows investigation into and evaluation of hand-held PDA devices for operational hazard prediction systems
Sensor Placement Operational Tool (SPOT)

- Monte Carlo parameters
 - Wind speed / direction
 - Release type
 - Agent type
 - Time of release
 - Mass
- Use optimization techniques to place sensors
 - Genetic Algorithm
 - Simulated Annealing
 - Greedy Algorithm

Optimal sensor placement to protect green area, including desirable (purple) and exclusion (red) areas
Application 1: Input into Collective Training
JFCOM J7 Joint Virtual Training Special Event 2005

• DTRA provided CBRN input into Collective training systems

• Systems involved
 – SPOT
 – CBSim
 – Detectors
 – Warning and Reporting Concept Demonstrator
 – ACAT tool
 – REACT PDA
 – External systems
 • OASES and WALTS
Application 2: Experimentation
JFCOM J9 Urban Resolve 2015 Experiment

- Assess effect of technologies which will be available in 2015 against a 2005 baseline
 - Overall scenario is peace enforcement in Baghdad
JFCOM J9 Urban Resolve 2015 Experiment

- CBRN component
 - Assess effect of potential integrated CBRN defence solutions
 - Effort led by DTRA & J8 JRO CBRND
 - Ground truth provided by CBSim
 - 2005 capability represented by HPAC
 - 2015 capability of JWARN/JEM/JOEF
 - Emulated by SAFE W&R and associated tools
CBRN and Supporting Components

• Source release federate – modelled sources
• OASES – provided weather to federates
• CBSim – provided ground truth and CB effects on JSAF entities
• CAD Detectors
• JSAF – modelled Iraqi military, some US military, and non-military entities (Iraqi police, insurgents, NGO, civilians, others)
• SAFE warning & reporting concept demonstrator
 – Includes source term estimation, ATP-45 & plume prediction
 – Emulated key required capabilities for JWARN/JEM
Details

- **Releases**
 - Munition detonation (120mm motar attack) mustard
 - 11,500 gallon chlorine tanker truck
 - Several levels of damage modelled dependent on attack

- **JSAF** modelled ~230,000 entities in Baghdad

- **CBSim**
 - Modelled dispersion for multiple sources
 - Provided updates of CB casualty states due to contamination to ~10,000 (peak 30,000) entities every 5-20 seconds

- **SAFE W&R concept demonstrator**
 - Fused detector readings to estimate source term
 - Modelled ensemble plume hazard
 - Exported hazard contours compatible for display on COP
Urban Resolve 2015 Results

- CBRN systems must be integrated with the entire battlespace awareness and command and control suite of the Joint Task Force
- CBRN events unfold over a significant amount of time – speedy response based on solid data and good analysis saves lives
- Future CBRN systems and processes require non-military functionality (e.g. political, economic and social)
Summary

• Presented DTRA led applications of CB simulation capability in
 – Training (JFCOM J7 JVTSE)
 – Experimentation (JFCOM J9 Urban Resolve)
• M&S capability demonstrably able to meet requirements
 – Significant enhancements made
• Experimentation results of benefit to decision makers, guiding future programmes
Future Plans

• Enhancements to CBSim
 – Performance improvements
 – Potential to increase functionality, e.g.
 • Improved meteorological modelling
 • Biological background
 • Advanced CB protection models
 • Improved human effects modelling
 • Physiological burden

• Exploring possibility of linking/integrating capabilities with IWMDT/IWMDTSim