Integrated Guidance Systems LLC Honeywell Rockwell Collins

A High G, MEMS Based, Deeply Integrated, INS/GPS, Guidance, Navigation and Control Flight Management Unit

Timothy M. Buck – Honeywell International Jason Wilmot – Honeywell International Michael J. Cook – Rockwell Collins

October 30, 2006

Presentation Overview

Integrated Guidance Systems LLC

- System Architecture
- MEMS Technology
- SAASM GPS and A/J Technology
- Ultra Tightly Coupled INS/GPS Architecture
- System Performance
- IEEE 1394b Bus Architecture
- ECTOS[™] IIc Software Architecture
- Future Generation FMU DIGNU3
- Summary

BG1930 FMU Overview

Integrated Guidance Systems LLC

Honeywell Rockwell Collins

Features

- 2-Channel Digital Nuller Anti-Jam Capability
- SAASM L1/L2 Dual Frequency GPSR
- PMC-Sierra RM7035C MIPS Processor
- MEMS Digital Inertial Sensor Assy (ISA)
- Small Size: 13.7 in³ (2.75"D x 2.3"H)
- Weight: < 1 Lbs</p>
- +5V input
- Power: < 9 W</p>

Performance

Aided-INS Outputs

Attitudes (roll, pitch, heading)
Velocity Vector (3-Dim)
Present Position (3-Dim)

- CEP < 5m, Vertical Err < 8m, 1sigma
- Tightly coupled or Ultra Tightly coupled INS/GPS Integrated Navigation
- Capable of Hosting G&C Software
- Outputs Flight Control Sensing Data
- 89dB J/S BB/CW (Tracking)

System Architecture

Integrated Guidance Systems LLC

Size	2.75"Dx2.3"H			
	13.7 cuin			
Weight	<1 lbs			
Power	+5v Primary, < 9W +3.3v Battery Backup, <0.11W			
GPS	SAASM L1 AND L2			
Interface	1 Async Port (LVDS) 1 SDLC / Async port (LVDS) 2 -port IEEE-1394b Bus 4 Prog Discrete I/O 4 Prog Discrete I/O / 2 Async ports (LVDS) DS-101 (LVCMOS) Time Mark In/Out (LVDS) IMU Strobe Mode Control			
A/J	89 dB BB/CW Track			
Processor	MIPS PMC7035C			
Cooling	Passive			
Memory	SDRAM - 16 Mbytes FLASH - 8 Mbytes			
Performance	UTC INS/GPS 5m CEP aided 26m CEP (60 sec Free Inertial)			
Environment	Temp-40 to 63 CTemp Shock±5 degC/minSet Back Shock15,750 gSet Forward Shock7,875 gAltitude120,000 ft			
MTBF	8,500 hrs			
Software	VxWorks RTOS ECTOS IIc Hosts Customer Code - Flight Control, Guidance and Mission Management			

System Architecture

Integrated Guidance Systems LLC

MEMS Technology

Based on the principle of Coriolis force

- Electrostatic force drive 2 proof masses at resonance
- Rotation about input axis causes Coriolis force normal to the drive plane

Output is sensed via capacitive pickoffs

- **★**Amplitude is proportional to input angular rate
- Robust error model minimizes errors
 - Automatic calibration procedure allows the errors to be observed and decoupled
 - A minimum variance estimation technique is used to compute the compensation model

★Allows the data to be weighted based on measurement uncertainty

MEMS Technology

Integrated Guidance Systems LLC

Honeywell Rockwell Collins

	ISA Performance				
Parameter	Realized				
	Goal	Mean	Stdev	Units	
Gyro					
Bias Repatability	20	17.1	9.6	deg/hr	
Bias (High G Shift)	20	100		deg/hr	
Bias In-Run Stability	5	15.7	11.4	deg/hr	
Scale Factor Repeatability	350	270.5	76.2	ppm	
Scale Factor (High G Shift)	350	4000		ppm	
Scale Factor In-Run Stability	50	268.1	74.3	ppm	
Random Walk	0.125	0.09	0.055	deg/√hr	
VRC	1	0.0084	0.757	deg/hr/g^2	
Noise	12	1.2	0.6	mrad/s	
Axis Misalignment	500	277.9	343.2	µrad	
Axis Orthogonality	200	34.3	41.1	µrad	
Accel					
Bias Repatability	4	1.2	0.66	mg	
Bias (High G Shift)	4	40		mg	
Bias In-Run Stability	0.8	0.5	0.25	mg	
Scale Factor Repeatability	700	427.5	225.4	ppm	
Scale Factor (High G Shift)	700	4000		ppm	
Scale Factor In-Run Stability	100	230.2	122	ppm	
Random Walk	0.03	0.03	0.006	m/s/√hr	
VRC	50	2.01	72.15	µg/g^2	
Noise	19	6.1	4.7	mg	
Axis Misalignment	500	295.9	365.5	µrad	
Axis Orthogonality	200	118.4	91.7	µrad	

ISA Performance

- •Sample space = 36 sensors
- Includes temperature effects
 - - 40 to 85 C
- In-run stability based on 1 minute averages
- •Alignment errors do not include mount to mount
- •VRE is mean bias shift from quiescent to 6grms

•Noise is standard deviation of 600Hz flight control data

SAASM GPS and AJ Technology

Integrated Guidance Systems LLC

Honeywell Rockwell

NavStorm+ GPSR

- Utilizes cutting edge packaging
 - 75% TCXO size reduction realized
 - 95% RF filter size reduction realized
- SAASM 3.3 technology
 - Direct Y capable
- L1 AND L2 capable
- Proven gun-hardness to 20 kG
- Integrated digital spatial nuller

SAASM GPS and AJ Technology

Integrated Guidance Systems LLC

- Dual independent RF channels
 - Interfaces with any FRPA
- 2 element digital AJ
 - 23 dB BB J/S enhancement
 - 30 dB CW/NB J/S enhancement
- Designed with a DI interface
- Realizes a 10 sec TTFM

UTC Architecture

Integrated Guidance Systems LLC

Honeywell Rockwell Collins

Today's Approach

Satellite tracking loops closed on an individual satellite basis

Receiver provides lowrate pseudorange and deltarange outputs

Dynamics of tracking loop closure generally unknown/unmodeled by Kalman filter

VTL Approach Vector tracking loop closure through the navigation solution Improved tracking under high interference conditions (jamming)

UTC Architecture

Key feature is GPS tracking loop closure through the navigation solution

- I and Q outputs for all satellites are used to generate the tracking loop closure commands for each satellite
- Approach takes advantage of the inherent coupling of the line-ofsight dynamics among multiple satellites
 - ★ N pseudorange or carrier phase measurements, but only 4 primary degrees of freedom (position & time)
 - **★** Provides effective signal-to-noise ratio enhancement
- I/Q measurements from each satellite are appropriately weighted in navigation Kalman filter based on estimated signal to noise ratio
- Replaces conventional GPS receiver code and carrier tracking loops when operating in deep integration mode

UTC Architecture

VTL Benefits

Enhanced signal to noise ratio

Code and Carrier NCO Freq.

Commands

(50 Hz)

- increases likelihood that tracking loop keeps errors small enough to stay within linear region of operation
- Improved anti-jam capability
- More effective integration of GPS with inertial and/or other sensors

Generation

- No cascading of GPS tracking loop filters with navigation Kalman filter
- No measurement processing rate limitations based on stability concerns
- Improved reacquisition following brief loss of tracking

Integrated Guidance Ho Systems LLC

100 Hz

Navigation

Outputs

System Performance - Sim

Integrated Guidance Systems LLC Honeywell Rockwell Collins

Scenario Definition •Gun launched •Constant 25 Hz roll rate during first minute •Constant 0 Hz roll rate after first minute •Maximum altitude of 29 km •Total Downrange of 200 km •Total Cross-range of 37 km •Total flight time of 7 minutes •DI aided •No jamming

System Performance

System Performance - Test

time [s]

Integrated Guidance Systems LLC

- Broadband Noise
- 66 dB J/S

Honeywell Rockwell Collins

time [s]

Dynamic Performance

- •1g linear accel
- •2, 4, 8 g turns
- Un-Jammed

IEEE 1394b High Speed Bus

Integrated Guidance Systems LLC Honeywell Rockwell Collins

FMU supports asynchronous and asynchronous stream transactions

Baseline FMU protocol (per SAE AS-1A-3 Standard)

- Designed for a highly deterministic, low jitter interface
- Uses asynchronous stream transactions only
 - ★ Isochronous packets
 - > Broadcast messages with no re-transmission in asycnc BW
 - ***** Asynchronous arbitration
 - Subaction gap (message gap)
 - > Arbitration reset gap (fairness interval)
 - ★ No isochronous bandwidth used

Incorporates rigidly deterministic messaging

- Every node assigned a time slot within a specified time frame
 - ★ A STOF is used to synch all subsystems
 - Supports variable rates
 - ★ Specified time frame is determined by STOF packet
 - ★ Each node is specified a time slot(s) at offsets to STOF
 - Multiple time slots allows for higher frequency messaging
 - ★ Each slot is specified a certain bandwidth
 - ★ Channel numbers a pre-assigned
 - ***** Nodes listen to specific channel numbers

IEEE 1394b High Speed Bus

Integrated Guidance Systems LLC

ECTOS™ IIc Overview

Integrated Guidance Systems LLC Honeywell Rockwell Collins

Provides the necessary operating system and tools

- Navigation
- Guidance
- Control

Major Functions

- Real-time Tasking Executive
- Navigation
- Aiding Kalman filter
- Mode control
- I/O interface software
- Diagnostics and BIT
- Includes User's Manual describing APIs and their use

ECTOS™ IIc Overview

Honeywell

Rockwell

Collins

Integrated Guidance

Systems LLC

Future Generation – DIGNU-3

Integrated Guidance Systems LLC

Parameter	Gyro		Accel	
	Perf (1σ)	Units	Perf (1σ)	Units
Operating Rate Range	1440	°/sec	70	g's
Scale Factor Repeatability	150	ppm	300	ppm
Scale Factor (In-Run Stability)	150	ppm	150	ppm
Scale Factor Asymmetry		ppm	100	ppm
Scale Factor Linearity		ppm	15	ppm/g
Bias Repeatability	1	°/hr	1	mg's
Bias (In Run Stability)	1	°/hr	0.4	mg's
Bias Static g Sensitivity	0.5	°/hr/g		
Bias g²-Sensitivity	0.5	°/hr/grms^2	10	_μ g/grms^2
Axes Alignment stability	1200	μ rad	1200	μ rad
Axes Alignment Stability, (non-orthogonality)	200	$_{\mu}$ rad	200	$_{\mu}$ rad
Random Walk	0.12	deg/rt-hr	0.07	m/sec/rt-hr

Summary

- IGS LLC's next generation INS/GPS guidance system is designed for the emerging demands of military applications
 - Gun hardened tested to 20 kg
 - Enhanced AJ capability 89 dB J/S
 - ★ Hardware AJ
 - ★ Ultra tightly coupled algorithms
 - Small volume 13.7 in³
 - Low power < 9 w</p>
 - Configurable hardware and software
 - ★ Capable of hosting customer guidance, control and flight management code
 - Militarized high speed IEEE 1394b bus architecture
 - Proven performance
- The future generation INS/GPS guidance system will realize enhanced performance in a smaller volume at reduced power