Introduction to GEIA-STD-0007
Logistics Product Data

James Colson
U. S. Army
Logistics Support Activity (LOGSA)

U.S. Army Materiel Command
Logistics Support Activity
Sparkman Center, Bldg 5307
Redstone Arsenal, AL 35898-7466
www.logsa.army.mil

Oct 2006
Outline

- Introduction – Why GEIA-STD-0007?
- Content
- Supportability Analysis
 Relationships
- Supportability Products/
 Contracting
- Relationship to AP239
- Summary/Schedule
Acquisition Reform

- OSD Mandate For Change
 - Dr. Perry’s Guidance June 1994

- DOD Will Rely on Commercial Products and Processes

- MIL-STD-1388 STDs Cancelled – 1996

- Ten Years Since MIL-STD-1388-2B was Eliminated
 - What are program offices using?
LSAR Utilization Survey

Survey Results Of Army Major Weapon Systems

<table>
<thead>
<tr>
<th></th>
<th>Number Of Responses</th>
<th>Number With Logistics Data Delivery Rqmts</th>
<th>Number Using LMI Spec</th>
<th>Number Using LSAR Standard</th>
<th>Number Using LSAR System For Data Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAT I</td>
<td>23</td>
<td>19</td>
<td>13</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>ACAT II</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37</td>
<td>29</td>
<td>17</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

Note: 25 of 29 (86%) Contractors Provided data in 1388/LSAR format!
Where are we Going?

- Fact: Re-establishing MIL-STD-1388, Will NOT happen!

- Direction → Industry Standards

- Utilizing the Defense Acquisition Life Cycle Framework
 - Effectively Replacing MIL-STD-1388-1A LSA Processes

- Working within the Framework of the Government Electronics and Information Technology Association (GEIA)
 - GEIA-STD-0007, Logistics Product Data
 - GEIA-HB-0007, Handbook and Guide for Logistics Product Data
 - Effectively Replacing MIL-STD-1388-2B, LSAR Data Exchange
The “BIG Picture”

- DoD Framework
 - Supportability Analysis
 - AP239 Activities
- GEIA-STD-0007
 - Logistics Product Data
- System Support
 - IETM
 - Training
 - Provisioning
 - Parts Lists
 - Etc…

October 2006
DOD Life Cycle Management Framework

Integrated Defense Acquisition, Technology, & Logistics Life Cycle Management Framework

October 2006
• Define Logistics Product Data Generated During Design of a System, End Item, or Product

• Define Data Exchange Mechanisms
Exchange Mechanisms

- **Central Exchange**
 Federated database, must establish exchange agreements with each “Partner”.

- **Point to Point**
 Simple exchange, must establish exchange agreements and Protocols with each Partner

- **Closely Tied**
 Related exchange, typically similar data and structure
GEIA-STD-0007 Content

- Functional Area Entities/Attributes
 - Cross Functional Requirements
 - Operations and Maintenance
 - Reliability Requirements and Analysis
 - Task Analysis
 - Skill and Training
 - Support Equipment
 - Unit Under Test
 - Facility
 - Transportability
 - Provisioning and Cataloging Requirements

- Data Types Dictionary
- XML Schema for Logistics Product Data
 - Update/Change Process
- XML Schemas for Transaction Sets
 - Provisioning & Style Sheet
 - Packaging & Style Sheet
 - Task Analysis
- LCN, ALC, UOC Assignment Guidance
The probability that, when used under stated conditions in an ideal support environment, a system will operate satisfactorily at any time. This differs from Inherent Availability only in its inclusion of consideration for preventive action. A_a excludes supply downtime and administrative downtime. The measurement bases for MTBM and M must be consistent when calculating A_a. A_a may be expressed by the following formula:

$$A_a = \frac{MTBM}{MTBM + M}$$

where

$$MTBM = \left(1 - \frac{1}{MTBF} + \frac{1}{MTBM-ND} + \frac{1}{MTBPM}\right) - 1$$

$$M = N \sum_{i=1}^{\infty} (ET_i)(TF_i)$$

$$M = \frac{N}{\sum_{i=1}^{\infty} TF_i}$$

$M = \text{Mean active maintenance downtime (where corrective and preventive actions are considered)}$, $ET_i = \text{Elapsed time for task } i$, $TF_i = \text{Task frequency for task } i$, $N = \text{Total number of tasks performed}$

Note: The measurement bases for MTBF, MTBM-ND, and MTBPM must be consistent when calculating the MTBM parameter.

<table>
<thead>
<tr>
<th>ELEMENT TYPE</th>
<th>TYPE</th>
<th>MAX LENGTH</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>achieved availability Type</td>
<td>decimal</td>
<td>9</td>
<td>The probability that, when used under stated conditions in an ideal support environment, a system will operate satisfactorily at any time. This differs from Inherent Availability only in its inclusion of consideration for preventive action. A_a excludes supply downtime and administrative downtime. The measurement bases for MTBM and M must be consistent when calculating A_a. A_a may be expressed by the following formula: $A_a = \frac{MTBM}{MTBM + M}$, where $MTBM = \left(1 - \frac{1}{MTBF} + \frac{1}{MTBM-ND} + \frac{1}{MTBPM}\right) - 1$, $M = N \sum_{i=1}^{\infty} (ET_i)(TF_i)$, $M = \frac{N}{\sum_{i=1}^{\infty} TF_i}$, $M = \text{Mean active maintenance downtime (where corrective and preventive actions are considered)}$, $ET_i = \text{Elapsed time for task } i$, $TF_i = \text{Task frequency for task } i$, $N = \text{Total number of tasks performed}$, Note: The measurement bases for MTBF, MTBM-ND, and MTBPM must be consistent when calculating the MTBM parameter.</td>
</tr>
</tbody>
</table>
<?xml version="1.0" encoding="UTF-8" ?>
<!-- xmlns:geia is needed by xpath in key/keyref as xpath does not work with default namespace -->
<xs:schema
 xmlns:lsartypes="http://www.geia_STD_0007.com/2006/types"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.geia_STD_0007.com/2006/schema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import
 namespace="http://www.geia_STD_0007.com/2006/types"
 schemaLocation="GEIA_STD_0007_Types.xsd" />
 <xs:complexType name="XA_end_item_acronym_code_data_type">
 <xs:all>
 <xs:element name="end_item_acronym_code"
 type="lsartypes:end_item_acronym_code_Type" />
 <xs:element name="logistic_support_analysis_control_number_structure"
 type="lsartypes:logistic_support_analysis_control_number_structure_Type" minOccurs="0" />
 <xs:element name="administrative_lead_time"
 type="lsartypes:administrative_lead_time_Type" minOccurs="0" />
 <xs:element name="contract_team_delay_time"
 type="lsartypes:contract_team_delay_time_Type" minOccurs="0" />
 <xs:element name="contract_number"
 type="lsartypes:contract_number_Type" minOccurs="0" />
 <xs:element name="cost_per_reorder_action"
 type="lsartypes:cost_per_reorder_action_Type" minOccurs="0" />
 </xs:all>
 </xs:complexType>
</xs:schema>
GEIA-HB-0007 (The Handbook!)
GEIA-HB-0007 Outline

- Overview of how (e.g. what analysis) and when Logistics Product Data is generated during the development process (AP239 and DOD Lifecycle Models)

- Description of the Logistics Product Data Entities and Attributes (When Required, Sources, Indenture Level Relationships, Primary Use)

- Contracting for Logistics Product Data

- Appendices
 - Sample Relational Tables
 - Test Data Set
 - LCN, ALC and UOC Guidance to Include Relationship to S1000D SNS
 - Data Cross Reference List (0007, DEF STAN 00 60, MIL-STD-1388-2B)

- Publish Dec 06
Supportability Analysis Process

Concept Refinement Phase/Generate Support Solution

DOD Life Cycle Framework Analyses

- Perform Use Study
- Perform Comparative Analysis
- Identify Standardization Opportunities
- Functional Requirements Analysis
- Define Supportability Factors

AP239, Product Life Cycle Support Activities

- Define Support Context
 - Life & Usage Profile
 - Available Resources
- Establish Requirements
 - Elicit Stakeholder Needs
 - Define Support Requirements

GEIA-STD-0007

- X Entities – Cross Functional Requirements
- A Entities – Operations & Maintenance Requirements
Supportability Analysis Process

Technology Development Phase/Generate Support Solution

DOD Life Cycle Framework Analyses

- Update Comparative Analysis
- Identify Standardization Requirements
- Define Functional Requirements
- Conduct Tradeoff Analysis
- Conduct Sensitivity Analysis
- Conduct Limited Task Analysis

AP239, Product Life Cycle Support Activities

- Define Support Solution
 - Establish Support Drivers
 - Task Analysis - Potential Tasks
 - Predict Support Performance & Resource Use

GEIA-STD-0007

- X Entities – Cross Functional Requirements
- B Entities – Reliability Requirements & Analysis
- C Entities – Task Analysis
Supportability Analysis Process

System Development & Demonstration Phase/Generate Support Solution

DOD Life Cycle Framework Analyses

- Define Functional Requirements
- FMECA
- Failure Tree Analysis
- RCM
- Task Analysis
- LORA
- Supportability Testing

AP239, Product Life Cycle Support Activities

- Predict Support Performance & Resource Use
- Task Analysis
- Define Support Solution
 - Support Policy
 - Support Plan
 - Task Procedures
 - Assemble Solution
- Assess Support Performance

GEIA-STD-0007

- X Entities – Cross Functional Requirements
- B Entities – Reliability Requirements & Analysis
- C Entities – Task Analysis
- E Entities – Support Equipment
- U Entities – Unit Under Test
- F Entities – Facilities
- G Entities – Skills & Training
- H Entities – Provisioning & Cataloging
Supportability Analysis Process

Production & Deployment Phase/Commission Support Solution

DOD Life Cycle Framework Analyses

- Supportability Testing
- Provisioning
- Provisioning Screening (Cataloging)
- Early Fielding Analysis

AP239, Product Life Cycle Support Activities

- Assess Support Performance
- Define Support Solution
- Provisioning

GEIA-STD-0007

- X Entities – Cross Functional Requirements
- H Entities – Provisioning & Cataloging
- All Other Entities Affected by Testing
Supportability Analysis Process

Operation & Support Phase/Provide Support

DOD Life Cycle Framework Analyses

- Materiel Fielding Analysis
- Post Production Support Analysis

AP239, Product Life Cycle Support Activities

- Analyze Support Feedback
- Collect Data and Provide Feedback

GEIA-STD-0007

- All Entities Affected by Data Collection and Feedback
The “BIG Picture”

DoD Framework

Supportability Analysis

AP239 Activities

GEIA-STD-0007

Logistics Product Data

System Support

IETM
Training Provisioning Parts Lists Etc…
Logistics Product Data Uses

- **Maintenance Planning**
 - Maintenance Plan
 - Maintenance Allocation Chart
 - Preventive Maintenance Checks & Services
 - Maintenance Procedures for IETMs (Task Analysis XML Schema)

- **Support and Test Equipment**
 - Support Equipment Recommendation Data
 - Calibration Maintenance Requirements Summary
 - TMDE Registration

- **Supply Support**
 - Provisioning Technical Documentation Lists (Long Lead, Post Conference, Common, Bulk Items, etc.) (Provisioning XML Schema & Style Sheet)
 - Design Change Notice Information
 - Cataloging/Screening/Parts Breakout
 - Indentured Parts List (for IETMs)
Logistics Product Data Uses (Continued)

- Manpower, Personnel & Training
 - Qualitative & Quantitative Personnel Requirements Information
 - Manpower Authorization Criteria
 - Task Inventory/Training Task List
 - New/Modified Skill/Training Requirements
 - Identification of Training Devices

- Packaging, Handling, Storage, and Transportation
 - Packaging and Preservation Data (Packaging XML Schema and Style Sheet)
 - Transportability Requirements

- Facilities
 - New/Modified Facilities Requirements
 - Maintenance Tasks Requiring New/Modified Facilities

- Reliability and Maintainability
 - Reliability Centered Maintenance Results
 - FMECA Results
Contracting for Logistics Product Data

- Identify the Data Uses and Analyses Needed for Logistics Product Data
- Document Required Data on the Attribute Selection Sheet
- Identify the Appropriate XML Schema for Data Transfer
 - Logistics Product Data
 - Provisioning
 - Packaging
 - Task Analysis
- Use MIL-PRF-49506, Logistics Management Information, DID-ALSS-81529 Citing:
 - Appropriate GEIA-STD-0007 XML Schema
 - Attribute Selection Sheet
Standards Content

GEIA-927

- Multi-Domain Entity Model
 - Lexical
 - Graphical
- Multi-Domain Entity Mapping Tables
- Entity/Attribute Dictionary

GEIA-STD-0007

- Logistics Product Data Implementation Model
- Data Element Dictionary
- Data Delivery Reqts

ISO 10303, AP239

- IDEF0 Activity Model – PLCS Process Model
- Entity/Attribute Model for PLCS
 - Lexical
 - Graphical
- Data Exchange Sets
 - Capability Modules
 - Entity Templates
 - Reference Data Library
AP239 DEXs are Developed based upon Business DEXs.

GEIA-STD-0007 Represents DoD Business DEX.

LOGSA Objective: Work with the Organization for the Advancement of Structured Information Standards (OASIS) to Incorporate GEIA-STD-0007 Logistics Data into the Appropriate DEX’s (1-5) and Create New DEXs where Gaps exist. (1-2 year Timeframe).

Must Retain Ability for DOD to Contract for Delivery of Structured Logistics Product Data.
GEIA-STD-0007 Spiral Development

- S1000D Data Requirements (IETM)
- S2000M Data Requirements (Provisioning)
- S3000L Data Requirements (LSA/LSAR)
- Def-Stan-0060 Data Requirements (UK LSA/LSAR)
- Documents
 - Drawings
 - Illustrations
- Level of Repair Analysis Data
- Improved Task/Subtask Referencing
Re-Establishes Industry/DOD Exchange of LSAR Data

Balloting Completed Sep 06 – Resolving Comments

Publish – Oct/Nov 06

Develop/Participate in ISO PLCS DEXs – ongoing

Develop, Ballot & Publish GEIA-HB-0007 – Dec 06
Contact Information

- Jim Colson (US AMC LOGSA)
 - multiview@logsa.army.mil
 - 256-955-9928

- GEIA-927 & GEIA-HB-927
 - www.geia.org

- GEIA-STD-0007 (Ballot Version)
 - Balloted
 - Publish – Oct/Nov 06

- GEIA-HB-0007
 - Draft Completed
 - Publish – Dec 06
Backup Slides

Backup Slides
International Standards Efforts

Organization for the Advancement of Structured Information Standards (OASIS)

- International Consortium promoting development of international e-business standards
- Driving Development of AP239 PLCS Data Exchange Sets (DEX’s)
 - DEX1, Product Breakdown for Support
 - DEX2, Fault States
 - DEX3, Task Specification
 - DEX5, Maintenance Plan
 - DEX7, Operational Feedback
 - DEX8, Product as Individual
 - DEX4/9, Work Package Definition and Report
 - Others
- LOGSA is Voting Member
AeroSpace Defense Association (ASD) Sponsored Effort

Companies Committed Resources for Development of Spec
- Boeing
- Dassault Aviation
- EADS/Airbus
- BAE
- Saab Aero

Minimal Government participation (Industry Driven)
- UK MoD
- USA LOGSA

Content will follow a Task focused approach (FMECA, RCM, Task Analysis, etc.)

Data Requirements will be defined later (early 07)
- DEX’s (AP239 Approach)
- GEIA-STD-0007 data model?

One Year Effort – 1 Jun 06 Start

Quarterly reviews
- Sep – SE
- Dec – FR
- Mar – GE
- Jun – US

S4000A (Specific Analysis: RCM, LORA, etc.) TBD.

Complimentary to S1000D (Tech Pubs) and S2000M (Provisioning)
A Reference Model that integrates across domains, facilitates the normalization of information. Each functional domain must only validate with 1 reference model and they become harmonized with all other domains.