Capability Acquisition Strategy Analysis: A Real Options Approach

Shin-Jyh Frank Chang Gary Backus Michele Steinbach

The MITRE Corporation

What is "Real Options"?

- An option confers a *right*, but not obligation, to take an action in the future for managing an asset.
- The Real Options methodology is a framework for valuing and planning of real assets.
- Examples of real options:
 - A stronger foundation and structure for a multistory parking garage
 - A rocket with extra fuel on each satellite to reconfigure a constellation
 - Application "hooks" built into the architecture of a software system
 - A foundation IT asset enabling future high-value applications
 - Pilot projects, feasibility studies, and prototypes can all create options

Real Options Triad

Viewing investment value through a Real Options lens:

The value of a project must be assessed not just from the technical/engineering aspect, but also on how the management would dynamically respond to uncertainties to achieve better Return on Investment.

Real Options supports strategic intuition with analytical rigor

- The traditional investment valuation tends to be
 - Optimistic: assume the project will finish and achieve optimal value
 - Simplistic: model uncertainty by an "average scenario"
 - Deterministic: can't handle scenario-dependent cash flows caused by optionality
- Through a Real Options lens, the risk and strategy context of the project is examined; potential evolution paths are accounted for.
 The value of an investment is assessed probabilistically.
- 4 major methods for Real Options Valuation:
 - Black-Scholes formula
 - Binomial lattice model
 - Decision tree analysis
 - Monte Carlo simulation

Real Options can offer a flexible systems engineering approach for capability acquisition

- Consider these concepts:
 - Field operationally acceptable capability earlier and make evolutionary increments over time. Considered contingency plans and exit opportunities. (Defense Acquisition Performance Assessment Report, 2006)
 - Take evolutionary steps to increase learning of a product's usefulness and consider an option to terminate a project if it is no longer beneficial. (GAO-04-744, 2004)
 - Structure major acquisitions into useful segments with a narrow scope and brief duration. (OMB Circular A-11, 2005)
- How would you assess the value of a project being shaped by these concepts?
 - We use a case study with notional data to demonstrate an analysis methodology based on a Real Options approach.

Case: Improving Tactical Data Link (TDL) systems to support the Close Air Support (CAS) mission

Two major problems in current TDL systems for CAS:

- Lack common data communication medium for all participants
- Need more effective message contents and delivery protocols

2 TDL Solutions for the CAS Mission

✓: existing or programmed capabilities Proposed solutions: (A)

Participants	Primary CAS aircraft		Secondary CAS aircraft			Joint Terminal Attack	CAS
Systems	A-10	F-16 C+	F-16 CG	F/A-18	AV-8B	Controller (JTAC)	Gateway
Modem+AFAPD			*			1	
Modem+VMF	A	A		1		1	B
Modem+MTS					1	/	
Situational Awareness Data Link (SADL)	>	\				A	B
Link 16			1				B

Two Solution Strategies

- Solution Strategy A: Equip primary CAS participants with a common data communication device
 - A1: Install improved data modems with VMF message format on all primary CAS aircraft.
 - A2: If A1 is not feasible, provide a light-weight SADL device to each tactical air controller.
- Solution Strategy B: Use CAS gateways to translate and forward messages for all CAS participants
 - Develop and field CAS gateways; extend the existing TADIL-J message standard and implement on CAS aircraft.

Staged Development and Implementation

Gateways + TADIL-J extension

Uncertainties in TDL Capability Acquisition

Which solution should be chosen?

- Conventional approach: trade off benefit, cost, and schedule; use sensitivity analysis or scenario analysis to understand the impact of uncertainties.
- The conventional approach <u>ignores possible actions</u> that could be taken by the manager to dynamically respond to uncertainties.

Our remedy:

- Use Decision Tree to model the interplays between technical development and management actions.
- Use Monte Carlo simulation to compute scenario-dependent benefit, cost, and schedule.

Starting off a Decision Tree for Solution A

Solution Strategy A - either Modem/VMF or SADL

- A1: Modem/VMF
- M1 Provide standalone capabilities for primary CAS aircraft pilots to receive digital 9-Line briefing
- M2 Digitally integrate the 9-Line briefing with the aircraft Operational Flight Program (OFP)

A2: SADL

Develop and field light-weight SADL to JTAC with suitable TACP system interface to enable direct connectivity to SADL aircraft.

(Analytica screen shot)

Anatomy of a Decision Tree

Each solution strategy is modeled as a decision tree containing a series of chance nodes and decision nodes. Each path of the tree ends at a terminal node.

Decision Tree for the A1 (Modem/VMF) Branch

This decision tree is organized around two kinds of uncertainties considered in tandem. Each outcome is followed by one or more decision options.

The Core Module of the A1 Decision Tree

- Each phase may span across multiple time periods.
- Progress status and outlook are reviewed after each period.
- The manager will decide which option to take; the project could embark on a different course of action.

Progress status probabilities can be easily derived from the probability of duration time

Duration time T of each phase has a probability distribution. Every project

P(T > 2 years)

finished probabilities are known data to feed into the decision-tree model.

No guesswork is needed!

Exit Criteria for the A1 Solution

- The entire effort should not take more than 6 periods.
- M1 development should not take more than 3 periods. Can wrap up the M1 effort with reduced requirements (Plan B).

M2 development should not take more than 2 periods.

Decision Tree Valuation

A decision tree is evaluated starting from terminal nodes back to the root.

Each node keeps a **value vector (b, c)**, which represents the **benefit** and **cost** rolled back from all terminal nodes that can traverse back to this node.

MITRE

Valuation at a Production Node

Let m denotes the length of the planning horizon, and the project takes n years to reach a **Production node**, then the value vector at this node is:

$$b = \sum_{i=0}^{m-n-1} \frac{\text{product benefit per year}}{(1 + \text{benefit discount rate})^i}, \quad c = \sum_{i=0}^{m-n-1} \frac{\text{O \& M cost per year}}{(1 + \text{cost discount rate})^i}$$

Discount Rates

- Cost discount rate: a measure of the time value of money for investments and expenses.
- Benefit discount rate: to express the urgent need for a timely solution or to penalize a delay in delivering required capabilities. (OMB Circular A-4 has an example.)
- With the use of discount rates, <u>time preference</u> is embedded in the decision rule an alternative branch will be chosen if it has a higher ratio of discounted benefit / discounted cost.
 - Performance, affordability, and timeliness are all molded into a single metric for solution comparison.

Decision Tree Valuation (cont.)

Comparing Benefit and Cost of Solutions A and B

Their values can only be known *probabilistically*.

Benefit	A	В
Min	0	0
Median	771	871
Mean	747	867
Max	880	1122
Std. Dev.	138	223

Cost (\$M)	A	В
Min	5.7	9.7
Median	21.1	31.1
Mean	21.0	31.0
Max	22.0	32.6
Std. Dev.	2.0	2.7

No clear winner.

B may get better benefit but at higher cost.

Comparing Solutions A and B based on Benefit / Cost Ratio

We are 90% certain that

A's ROI value would exceed 32;

B's ROI value would exceed 22.

Conclusion: With all potential outcomes considered, **A** is probabilistically better than **B** for Return on Investment.

Sumulative Probability

Value-at-Risk Graph Magnified

Another Look at the Value-at-Risk Graph

Uncertainties in project development and funding decision have been translated into **Risk in ROI**.

MITRE

Options can enhance Solution A's ROI

ROI	A without options	A with options	
Min	0	0	
Median	28	37	
Mean	29	35	
Max	38	40	
Std. Dev.	7	7	

MITRE

Possible Outcomes of Solution A

Strategy Analysis for the "M2 option"

- Most critical factor: M2 starting investment
- current estimates of M2 starting investment and yearly benefit
- Green zone: favorable conditions for taking the M2 option
 Based on the given data, the M2 option is unlikely to be exercised.

Strategy Analysis for the "full-scale M1 option"

It can be proved that the above decision tree can be transformed into:

Based on the given data, the lower branch is more cost effective, so there is a 75% chance that the "full-scale M1 option" will be exercised in period 4. 29

Further Sensitivity Analyses on Discount Rates and Planning Horizon

- A is increasingly better than B when the cost discount rate increases.
- A's advantage over B gets diminished as the benefit discount rate increases
 - When benefit discount rate ≥ 19%, B becomes the preferred solution.
 - The benefit discount rate models "time preference" or urgency for a solution. If you want a solution so "bad", B might be a better choice.
- A is increasingly better than B for longer planning horizon. If it's shorter than 16 years, there is no clear winner.

A solution selected, a strategy suggested

Gateways + TADIL-J extension

Strategy:

- If the A1 path is feasible to go, just develop the basic capability M1.
- May need to consider reduced M1 development (as Plan B).
- After each period, reassess the strategy with most current data.

Real Options Thinking for the TDL-CAS Case

Uncertainty:

- Convoluted schedule risk in system and platform upgrade
- Technology readiness
- Funding

Flexibility:

- Deliver operationally acceptable capability in near term
- Prepare to acquire capability incrementally
- Consider contingency plans and exit opportunities

Strategy:

- Field initial capability and give up further development
- Reduce requirements and wrap up effort after n years

Conclusion

- Managerial flexibility can make significant difference in investment value of capability acquisition programs.
- Decision-tree analysis and Monte Carlo simulation are useful tools:
 - Decision trees can model flexible systems engineering concepts. The Decision Maker will be well informed of decision consequences. The decision tree should be a live one with refreshed data every period to provide updated advice.
 - Monte Carlo simulation with risk profile analysis enables probabilistic evaluation of Return on Investment.

Backup Slides

Solution benefit is estimated from a multi-attribute value analysis

Probabilistic Evaluation of Solution A

We are 90% certain that A's...

Min	0
Median	771
Mean	747
Max	880
Std. Dev.	138

Min	5.7
Median	21.1
Mean	21.0
Max	22.0
Std. Dev.	2.0

Probabilistic Evaluation of Solution B

We are 90% certain that B's...

Min	0
Median	871
Mean	867
Max	1122
Std. Dev.	223

Cost

Min	9.7
Median	31.1
Mean	31.0
Max	32.6
Std. Dev.	2.7

Possible Outcomes of Solution A with Options

Possible Outcomes of Solution A without Options

This analytic approach can be applied to projects with similar characteristics

- There exist significant uncertainties in project development and funding decisions.
- There is time-to-market pressure, but the product development process will be long and has multiple phases with uncertain duration in each.
- An initial useful capability can be defined and it can enable the development of more advanced capabilities.
- The project is not destined to acquire a "100%" solution; contingency plans and exit strategies are allowed and encouraged.