Test & Evaluation in the Virtual World

David R. Pratt, PhD
Robert W. Franceschini, PhD
Science Applications International Corporation (SAIC)
prattda@saic.com
Motivation

- Changes in weapons systems
 - Increased ranges
 - Complexity of environment

- Horizontal convergence
 - Live – Virtual – Constructive

- Vertical convergence
 - Analysis
 - Testing
 - Training
 - Mission rehearsal
 - Operations
Component Systems

- OneSAF Objective System (OOS)
 - Provides context, environment and synthetic convoy
- Common Architecture Desktop/Embedded Trainer (CADET)
 - Provides a virtual simulator with the embedded high fidelity vehicle simulation using MATLAB/C++ model
- Talon Robot
 - A live robot that is capable of interacting in the synthetic environment
- Expedition Dismounted Infantry (DI) representation
 - Provides a dismounted infantry immersive environment
- Test and Training Enabling Architecture (TENA)
 - Functions as middleware for live testing
- Unmanned Systems Test Bed (USTB)
 - Emulates an unmanned aerial vehicle (UAV)
- Modular Analysis Test Support System (MAnTSS)
 - Collects and analyzes testing data
Notional System Architecture

- MAnTSS
- TENA
- Unmanned System Testbed
- Expedition DI
- OOS
- High fidelity vehicle models
- Talon UGV
- Crew Station

Time Space Positioning Information (TSPI) Object Model

Provides Context

Controls

Embedded in

TENA

(DIS)
CADET Crew Station

User

Controls

Visualization

Crew Station

External Interface

OOS (modified)

High fidelity vehicle model
Talon UGV

- **Live system**
 - Controlled by OOS
 - Replaced lower level synthetic elements with actual drivers
 - Teleoperated by joystick
- **Turret**
 - Remote camera
 - Blank firing M-16
- **Wireless Networked**
 - 802.11
Lightweight communication designed to connect live systems
Domain specific optimization over traditional interoperability protocols
Emerging standard for range systems
Time Space Positioning Information (TSPI) Object Model
Notional Scenario

Location
- Kauai Pacific Missile Range Facility (PMRF)

Entities
- UAV (synthetic from USTB)
- Robotic entity (live on blocks)
- Stryker variant (controlled by crew station)
- Trucks / Targets (synthetic from OOS)
- Human (synthetic from Expedition DI)

Actions
- The UAV sees a small (3-4) convoy of trucks
- The Stryker moves to and engages the trucks
- The human and robot inspect the damage to the trucks
Scenario Participants

- **Vigilante UAV**
 - Driven from the USTP
 - In reconnaissance mode

- **Four trucks (targets)**
 - Generated from OOS
 - Convoy driving down road

- **Stryker Vehicle**
 - Driven by the crew station
 - Hybrid electric drive model controls dynamics
 - Attacks convoy

- **UGV**
 - Physical device on blocks
 - Tasked by OOS/Crew Station
 - Inspects convoy after attack by Stryker
Scenario
Interoperability Issues

- TENA
 - TSPI object model
 - Reference version was used

- HLA
 - TBD FOM
 - Version: RTI-1.3, Matrex version 4.2

- Terrain Data
 - Kauai Pacific Missile Range Facility (PMRF) High Res
 - The digital raster graphics is at: http://www.hinhp.org/website/hawaii/kauai/data/drg.zip.
 - Shape files and some others are at: http://www.hinhp.org/website/hawaii/kauai/data.html.
Results

■ Success!
 – By the time the show opened everything worked
 – And then extended on the show floor

■ Terrain registration
 – Common source
 – Control over generation process

■ OOS Modular Communication Interface modification
 – Modified HLA interface with TENA

■ High Fidelity Engine/Suspension Model
 – Wrapped in OOS component model
 – Proxy implementation to remote computer

■ Transparent interaction among elements