Improving Systems Engineering Process Through Value Stream Mapping

By
Brent Theodore
Overview

• More than 5,000 design changes per year have been made to the C-17, for the past three years (more than 1,000 major design changes per year)

• Formal systems engineering (SE) process established in 1998, instrumental in design development

• Integral tie between C-17 SE process and overall Process Based Management (PBM)

• Mission Assurance philosophy embedded in culture and processes

• Open communication and shared vision support true USAF/Boeing system engineering partnership
Vision:

• The C-17 Enterprise is the World Class Leader in Systems Engineering:
 • Robust, standardized, effective, & efficient Systems Engineering products, processes, & tools are applied & integrated across the C-17 Program to enable mission success
 • For all system development there are thoroughly defined and validated requirements, at all levels that are fully traceable from customer needs through verification and validation
 • Risks are defined and managed to ensure balanced technical, schedule, and cost performance throughout the product life cycle (Develop, Produce, Operate, Support)

Mission:

• To define & ensure common application of SE processes using a controlled tailored approach, that will facilitate C-17 program and mission success
Driving Forces for Change ~ Where We Were

- People
 - Gain greater Systems Engineering (SE) understanding
 - Initiate common SE focus
- Improve Customer satisfaction (external)
 - Systems Engineering (SE) Imperative
 - Customer Involvement
- Need to Institutionalize systems engineering
 - Greater Process discipline
 - Internal customer satisfaction
- Increase Focus on Supplier Systems Engineering (SE)
 - Requirements
 - Quality
Priorities

• Institutionalize systems engineering
 – People: Training / rotation / communication / knowledge transfer
 – Process discipline, metrics

• Strategic roadmap
 – Near term actions / address customer concerns
 – Long range vision to keep focus
 – Supplier SE roadmap
Systems Engineering Imperative Context

External Influences
- USAF C-17 Upgrades
- Industry Initiatives (INCOSE, CMMI, LAI, …)
- Enterprise Value Stream Mapping (identifies SE as focus area)
- SE Survey

Internal Influences
- Process (ISO, PBM, …)
- Organization (IPTs)
- People resources
- C-17 baseline
- SE HILT
- Tool capabilities

SE Process
- Understand situation
- Define requirements
- Perform trade study
- Develop and implement plan

Infrastructure
- Common vision buy-in
- Management commitment
 - Participation
 - Resources
- PBM framework
- Project participation
- Employee Involvement
- Lessons learned database

World class leader in systems engineering enabling mission assurance
• Boeing Benchmark
• Institutionalized
• Involves Customer Throughout
SE Strategy Implementation Plan

• Near term actions (6 months) and long term vision will be integrated into single SE improvement plan.
 – Nine focus areas identified in early self assessment
 – Best practice implementation based on internal (Boeing) systems engineering survey (external to C-17)
 – 22 improvement projects from the 3 VSMs
 – Discipline to process
 • Metrics, Training, Communication, updated processes and command media
 – Engineering Best Practices corrective action plan
 – SE Manual updates
 – Implementation of IDS Command Media and SE HILT Common Tools and Processes
Recent Accomplishments

- Two sessions of Value Stream Mapping (VSM) Completed in 2005
 - Phase A Jun 05, Customer needs – CDR
 - Phase B Dec 05, CDR - Verification)
- Technical Flowdown to Suppliers VSM Completed (Feb 2006)
- SE Tool Training @ SG
- OSS&E Training by SG & Boeing in LB

Current Focus Areas:

1. 22 Improvement Plans (from VSMs)
 - Requirement definition
 - Key opportunities to improve cycle time reduction suppliers
2. Program Level Metrics
 - PMBP (SE) Improvement Plan
3. Training Engineering in SE Processes

We Are Here

Maturing from “breakthrough” to “strengthening” SE processes

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
<th>Step 7</th>
<th>Step 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Self-Assessment</td>
<td>Initially Identified Current State</td>
<td>Set Vision</td>
<td>Initial Focus Areas Identified</td>
<td>SE Survey (external to C-17)</td>
<td>Evaluation & Planning (for VSM)</td>
<td>Value Stream Mapping</td>
<td>Develop Implementation Plan</td>
</tr>
<tr>
<td>Implement Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participation

- Systems Group – 7 (Avionics, Conf Mgt, Structures, Lean, Production Ops, Support Systems, Systems Eng)
- Boeing Systems Engineers (non C-17) – 6 (AFS, Anaheim, C-130, Canoga Park, Huntington Beach, 767 Tanker)
- Analysis and Integration – 4 (Block Integration, Configuration Mgt, Change Mgt, Program Mgt Systems)
- DCMA - 2
- Supplier Management - 2
- Support Systems – 1
- Production Operations - 1
- Lean Enterprise – 3
Apply Lean Techniques to Identify Improvements

1. Define the boundaries
2. Define the objectives
3. “Walk” the process
 - Identify tasks and flows of material and information between them
4. Gather data
 - Identify resources for each task and flow
5. Create the “current state” map
6. Analyze current conditions
 - Identify value added and waste
 - Reconfigure process to eliminate waste and maximize value
7. Visualize “ideal state”
8. Create the “future state” map
9. Develop and track action plans
Near Term Improvement Projects identified

☐ Interface Management
☐ Project Reviews
☐ Requirements Process Enablers
☐ Needs Definition
☐ Systems Integration

☐ Trade Study Improvement
☐ Verification Improvement
☐ Project Team Memberships
☐ Statement of Requirements (SOR)
☐ Development Improvement

Future State
By working jointly significant SE progress improvements have been made
• Use PICK process
 – Possible
 – Implement
 – Consider
 – Kill
SE VSM Project Schedule & Plan

Identified 22 projects from 3 VSMs
- Closed 11, Transferred 2
- Stimulating IPT integration
- Enterprise-wide collaboration

Table: Project Details

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Team Leader</th>
<th>ECD</th>
<th>% Comp</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Design Review Template</td>
<td>Jim Settlemyre</td>
<td>8/25/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-2</td>
<td>Interface</td>
<td>Samuel Son</td>
<td>3/28/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-3</td>
<td>Requirements Enablers</td>
<td>Sunil Verma</td>
<td>3/27/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-4</td>
<td>User Needs Meeting</td>
<td>Ralph Brunson</td>
<td>1/4/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-5</td>
<td>SOR Development</td>
<td>Sai Trujillo</td>
<td>9/14/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-6</td>
<td>Project Integration</td>
<td>Cecilia Rubio</td>
<td>5/28/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-7</td>
<td>Team Members NAR</td>
<td>Ken Carruth</td>
<td>3/26/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-8</td>
<td>Trade Study</td>
<td>Ralph Brunson</td>
<td>8/2/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>A-9</td>
<td>Verification & Validation Plan</td>
<td>Ben Luong</td>
<td>12/9/2005</td>
<td>100%</td>
<td>BLUE</td>
</tr>
<tr>
<td>B-1</td>
<td>Verification & Validation Plan and Products</td>
<td>Ben Luong</td>
<td>10/27/2006</td>
<td>90%</td>
<td>GREEN</td>
</tr>
<tr>
<td>B-2</td>
<td>Peer Review Deployed program wide</td>
<td>Dana Pugh</td>
<td>10/15/2006</td>
<td>50%</td>
<td>BLUE</td>
</tr>
<tr>
<td>B-3</td>
<td>System Requirements Traceability Plan</td>
<td>Sai Trujillo</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B-4</td>
<td>Aircrew Validation</td>
<td>Dave Lotts</td>
<td>11/3/2006</td>
<td>10%</td>
<td>RED</td>
</tr>
<tr>
<td>B-5</td>
<td>Project Test Capability (formally TPR)</td>
<td>Steve Cohen</td>
<td>9/15/06</td>
<td>95%</td>
<td>GREEN</td>
</tr>
<tr>
<td>B-6</td>
<td>Management of Support Systems into Development</td>
<td>Ralph Brunson</td>
<td>4/30/2006</td>
<td>100%</td>
<td>GREEN</td>
</tr>
<tr>
<td>B-7</td>
<td>Lessons Learn Captured</td>
<td>Marybeth Catalina</td>
<td>3/15/2007</td>
<td>50%</td>
<td>GREEN</td>
</tr>
<tr>
<td>B-8</td>
<td>Improve Risk Management Process</td>
<td>Ralph Brunson</td>
<td>10/13/2006</td>
<td>75%</td>
<td>YELLOW</td>
</tr>
<tr>
<td>B-9</td>
<td>Supplier Mgt - Risk and TPML 2nd Source Tech Review, Verify all Read</td>
<td>Santhi San</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C-1</td>
<td>Engineering Best Practice</td>
<td>Samuel Son</td>
<td>12/21/2006</td>
<td>60%</td>
<td>GREEN</td>
</tr>
<tr>
<td>C-2</td>
<td>Program Management Best Practice</td>
<td>Samuel Son</td>
<td>9/3/2006</td>
<td>95%</td>
<td>YELLOW</td>
</tr>
<tr>
<td>C-3</td>
<td>Technical Documentation Creation - Templates & Checklists</td>
<td>Willis Hamilton</td>
<td>11/17/2006</td>
<td>60%</td>
<td>GREEN</td>
</tr>
<tr>
<td>C-4</td>
<td>Control of Technical Documents released to Supplier Mgt - PEPI</td>
<td>Willis Hamilton</td>
<td>12/15/2006</td>
<td>13%</td>
<td>GREEN</td>
</tr>
<tr>
<td>C-5</td>
<td>Control of Technical Documents released to Supplier Mgt - DR/MIP</td>
<td>Willis Hamilton</td>
<td>12/15/2006</td>
<td>13%</td>
<td>GREEN</td>
</tr>
<tr>
<td>C-6</td>
<td>Eliminate Redundant CMS Packages Reviews</td>
<td>Willis Hamilton</td>
<td>6/30/2006</td>
<td>100%</td>
<td>BLUE</td>
</tr>
</tbody>
</table>

Project Testing Capability (green) - 95% Confidence

Diagram: Project Testing Capability

- [Green Diagram]

Project Management (LPT)

- [Diagram: Project Management (LPT)]

Objectives

- [List of objectives]

Approach

- [List of approach steps]

References

- [List of references]

Appendix

- [Appendix content]
Metrics Summary Overview

Program-Level Metrics Review: Measuring Effectiveness of SE Process

Metric Titles

<table>
<thead>
<tr>
<th>Aug-06</th>
<th>Sep-06</th>
<th>Oct-06</th>
<th>Nov-06</th>
<th>Dec-06</th>
</tr>
</thead>
</table>

Systems Engineering Health

1. **SE Scorecard**
 - G
 - G

2. **Best Practices Assessment (SE Unique)**
 - 2a. **Program Management Best Practices**
 - G
 - G
 - 2b. **Engineering Best Practices**
 - G
 - G

3. **Risk Management Effectiveness**
 - 3a. **Project Approved Within Normal Lead Time**
 - G
 - B

Predictive Metrics

1. **Requirements Quality** *(Engineering-Quality)*
 - N/A
 - N/A

2. **After-Initial Release/Initial Release** *(Engineering-Quality)*
 - G
 - G

3. **Design Reviews: Critical Action Items** *(IMP/IMS)*
 - G
 - G

Reactive Metrics

1. **Advanced Assembly Orders** *(Production-Quality)*
 - G
 - G

2. **LRU Tag Trend** *(Production-Quality)*
 - G
 - G

3. **Deviations & Waivers** *(Production-Quality)*
 - G
 - G

Operational Metrics

1. **MTBM (I), Inherent** *(Aircraft Reliability)*
 - B
 - B

2. **# of Work Packages with RHI >= 10** *(Aircraft Safety)*
 - G
 - G
Systems Engineering Training

- Operational, Suitability, Survivability & Effectiveness conducted by SG and Boeing in Long Beach
- SE tool training provided on site to SG
- SE Overview training scheduled for all Air Vehicle engineers & project managers
We are moving toward our vision of Systems Engineering Excellence.
Summary

• Number of driving forces for change
• Used a structured, lean engineering analysis of systems engineering to take Systems Engineering on C-17 Program to the next level
 – Performed value stream map on product development process from customer need through verification
 • Identify key improvement areas
 • Integrated plans into System Engineering Strategic Imperative
• Built on our strong Process Based Management (PBM) foundation
• Change the culture
• Training is essential to deployment / sustainment
• Process application is key to institutionalization
• Application of Systems Engineering process execution encompasses everyone
• Communicate at all levels

Application of Lean techniques is key in supporting our journey to Systems Engineering Excellence