Models for Product Quality

The Capability Maturity Model Integrated for Development

CMMI-DEV, Version 1.2

Integrated Project Management (IPM):
The CMMI and collaborative product development

Course Guide
About SSQC

William J. Deibler II and Robert Bamford founded SSQC in 1990 to support organizations in the definition and implementation of Software, Hardware, and Systems Engineering Practices, Software Quality Assurance and Testing, Business Process Reengineering, ISO 9000 Registration, and CMM/CMMI implementation. Their clients have successfully achieved ISO registration and advanced CMM and CMMI maturity levels.

Bob and Bill have developed and published numerous training courses, assessment and auditing tools, research papers, and articles on interpreting and applying the ISO 9000 standards and guidelines and the SEI Capability Maturity Model for Software. They were the principal authors and editors of A Guide to Software Quality System Registration under ISO 9001, and have served as active United States TAG members in the ISO/IEC JTC1 SC7 - Software Engineering Standards subcommittee, which is responsible for the development and maintenance of ISO 12207 and ISO 15504 (SPICE). Their latest book, ISO 9001:2000 for Software and Systems Providers, and Engineering Approach, was published in 2003 by CRC Press. The book joins their extensive portfolio of articles, which have appeared in McGraw Hill’s Quality Systems Update, IEEE COMPUTER, McGraw Hill’s ISO 9000 Handbook, CrossTALK, and Software Marketing Journal.

Since 1990, they have presented research papers and tutorials at over 50 national and international conferences, including those sponsored by the American Society for Quality (ASQ), the ESPI Foundation (ESEPG), Pacific Northwest Software Quality (PNSQC), the Software Publishers Association (SPA), Software Technology Support Center (STSC), the Software Engineering Institute (SEI) and Software Research Inc. Their courses have been offered through universities and professional associations, including the ASQ, the CSU Long Beach Software Engineering Forum for Training, Semiconductor Equipment and Materials International (SEMI), the Software Engineering Institute (SEI), UC Berkeley, and UC Santa Cruz.

William J. Deibler II has an MSc. in Computer Science and over 25 years experience in the computer industry, primarily in the areas of software and systems development, software testing, and software quality assurance. Bill has extensive experience in managing and implementing CMM-, CMMI-, and ISO 9001-based process improvement in software, hardware, and systems engineering environments. Bill is an SEI-authorized SCAMPI Lead Appraiser for CMMI.

Robert Bamford has an MAT in Mathematics. In a professional career spanning more than 30 years, he has taught secondary and university Mathematics, and has worked in and managed training development, technical publications, professional services, and third-party software development. His experience also includes implementing a Crosby-based Total Quality Management System, implementing CMM-, CMMI-, and ISO 9000-based systems, and developing and facilitating workshops and courses.
Integrated Project Management (IPM)

The CMMI V1.2 and collaborative product development

Getting started

- About the presenters
- Audience
 - Some level of familiarity with the Software CMM Version 1.1 or CMMI Version 1.1 (Staged or Continuous)
 - Maintaining SW CMM 1.1, finishing CMMI V 1.1, starting CMMI V 1.2
- Experience breeds …, well, opinions, concerns, etc.
Project management: prioritized issues

- Develop an individual list of the challenges your organization needs to address in managing projects or programs
 - On-going problems
 - Impending needs
- Prioritize individual list
- Develop a single prioritized list of five items as a team
- Pick a representative to present team’s list in 3 minutes
- Ensure your concerns are addressed to greatest possible extent

About the rest of the presentation

- **Brief** orientation
 - Structure of CMMI SE/SW v1.2
 - Process Areas, Goals, Practices, and Process Categories
 - A warning: Chasing levels
- **Integrated Project Management (IPM) - The Specific Practices**
 - Metrics, models, Key Performance Indicators
 - IPM and the Project Management Category Process Areas
 - Managing critical dependencies and risk
 - Project Planning (PP)
 - Process Monitoring and Control (PMC)
 - Team exercise: Case study
- **Integrated Product and Process Development (IPPD)**
 - IPM and the Support Process Category Process Areas
- **IPM and the Generic Practices**
- Tools, tips, checklists and implementation opportunities
Orientation to the CMMI v 1.2
(with references to V1.1)

The model

www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

www.sei.cmu.edu/publications/documents/02.reports/02tr011.html

www.sei.cmu.edu/publications/documents/02.reports/02tr012.html
A few words about Representations

- CMMI supports two approaches through representations

- Organizations diligently study both and pick one (see the Introduction)

CONTINUOUS REPRESENTATION

PRIORITY: Improve organizational capability in specific process areas (like CM, Requirements, and Verification)

MEASURE OF SUCCESS: Implementation of individual process areas

STAGED REPRESENTATION

PRIORITY: Customer requirement for proving a standardized organizational maturity level

MEASURE OF SUCCESS: Implementation of pre-defined sets of process areas

- Core content is the same and there is a way to convert: equivalent staging

- Assessed capability can be converted to an equivalent maturity

V1.1 ≠ different volumes V1.2 = rules of interpretation
A few words about Levels

- Staged supports *organizational maturity*
 - Level 2 through 5
- Continuous supports *process capability*
 - Levels 0 through 5
- Your organization diligently studied the current state of its practices and established a realistic target for capability or maturity level
- Each increase in level adds requirements

A few words about Disciplines

- **V1.1**: Each CMMI representation is provided in four versions based on disciplines
- **V1.2** CMMI has clearly labeled guidance for SW, HW, SE and additions for IPPD
- Your organization carefully considered the current state of its processes and determined
 1. what engineering disciplines and functions to involve in the implementation
 2. whether to include IPPD

- Single book approach (CMMI-DEV+IPPD)
Process Areas, Goals and Practices

- **PROCESS AREA**
 - **GENERIC GOALS with GENERIC PRACTICES**
 - Activities that enable the specific practices (e.g., plan process, train, measure performance, report progress)
 - **SPECIFIC GOALS with SPECIFIC PRACTICES**
 - Specialized activities unique to the Process Area (e.g., review requirements, assemble product, test)

The major variation between the approaches in the continuous and staged representations is in the GENERIC GOALS and GENERIC PRACTICES included in a process area.

Required, expected, informative

Required components describe
- what an organization must achieve to satisfy a process area. This achievement must be visibly implemented in an organization’s processes. The required components in CMMI are the specific and generic goals. Goal satisfaction is used in appraisals as the basis for deciding whether a process area has been achieved and satisfied.

Expected components describe
- what an organization may implement to achieve a required component. Expected components guide those who implement improvements or perform appraisals. Expected components include the specific and generic practices. Before goals can be considered satisfied, either the practices as described, or acceptable alternatives to them, are present in the planned and implemented processes of the organization.

Informative components provide
- details that help organizations get started in thinking about how to approach the required and expected components. Subpractices, typical work products, amplifications, generic practice elaborations, goal and practice titles, goal and practice notes, and references are examples of informative model components.

CMMI V1.1 and V1.2, Section 2
The CMMI glossary of terms is not a required, expected, or informative component of CMMI models. You should interpret the terms in the glossary in the context of the model component in which they appear. (CMMI V1.2, Section 2 Process Area Components)

To find out what the authors of the CMMI had in mind, look up:

- Familiar terms that don’t seem to fit or that are interpreted differently by members of the team
- Unfamiliar terms

Be aware of “must’s in the Glossary (“establish and maintain”)

CMMI Process Areas by Category

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>Type</th>
<th>Process Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Management (PCM)</td>
<td>Basic</td>
<td>OPF Organizational Process Focus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPD Organizational Process Definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT Organizational Training</td>
</tr>
<tr>
<td></td>
<td>Advanced</td>
<td>OPP Organizational Process Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OID Organizational Innovation and Deployment</td>
</tr>
<tr>
<td>Project Management (PJM)</td>
<td>Basic</td>
<td>PP Project Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMC Project Monitoring and Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPM Supplier Agreement Management</td>
</tr>
<tr>
<td></td>
<td>Advanced</td>
<td>BSKM Integrated Project Management for IPPD</td>
</tr>
<tr>
<td>Engineering (ENG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic</td>
<td>RM Requirements Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RD Requirements Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS Technical Solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI Product Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCR Verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAL Validation</td>
</tr>
<tr>
<td>Support (SUP)</td>
<td>Basic</td>
<td>MA Measurement and Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPQA Process and Product Quality Assurance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CM Configuration Management</td>
</tr>
<tr>
<td></td>
<td>Advanced</td>
<td>DAR Decision Analysis and Resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAR Causal Analysis and Resolution</td>
</tr>
</tbody>
</table>
Categories and interactions

CMMI V1.2, Section 4, Relationships Among Process Areas

Although we are grouping process areas this way to discuss their interactions, process areas often interact and have an effect on one another regardless of their defined group.

Being aware of the interactions that exist among CMMI process areas and which process areas are Basic and Advanced will help you apply CMMI in a useful and productive way.

See V1.1 Section 5

Employ established principles

CMMI V1.2, Section 5, Using CMMI Models

Regardless of your type of organization, to apply CMMI best practices, you must use professional judgment when interpreting them for your situation, needs, and business objectives. Although process areas depict the characteristics of an organization committed to process improvement, you must interpret the process areas using an in-depth knowledge of CMMI, your organization, the business environment, and the specific circumstances involved.

As you begin using a CMMI model to improve your organization’s processes, map your real-world processes to CMMI process areas. This mapping enables you to initially judge and later track your organization’s level of conformance to the CMMI model you are using and to identify opportunities for improvement.

CMMI models do not explicitly prescribe nor imply particular processes that are right for any organization or project. Instead, CMMI describes minimal criteria necessary to plan and implement processes selected by the organization for improvement based on business objectives.

See V1.1 Section 1

See V1.1 Section 2
Employ established principles (cont.)

CMMI V1.2, Glossary, in three places: under "adequate" and "appropriate" and "as needed"

When using any CMMI model, you **must** interpret the practices so that they work for your organization.

See V1.1, Section 3

The intended scope of CMMI

CMMI V1.2, Section 1, *The Scope of CMMI for Development*

CMMI for Development is a reference model that covers the **development** and **maintenance** activities applied to both **products** and **services**.

Models in the CMMI for Development constellation contain practices that cover **project management**, **process management**, **systems engineering**, **hardware engineering**, **software engineering**, and other supporting processes used in development and maintenance. The CMMI for Development +IPPD model also covers the use of **integrated teams** for development and maintenance activities.

See CMMI V1.1, Chapter 5
The intended scope of CMMI (cont.)

CMMI® (Capability Maturity Model® Integration) is a process improvement maturity model for the development of products and services. It consists of best practices that address development and maintenance activities that cover the product lifecycle from conception through delivery and maintenance.

Establish and Maintain

In the CMMI Product Suite, you will encounter goals and practices that include the phrase “establish and maintain.” This phrase means more than a combination of its component terms; it includes documentation and usage. For example, “Establish and maintain an organizational policy for planning and performing the organizational process focus process” means that not only must a policy be formulated, but it also must be documented, and it must be used throughout the organization.
Processes: managed and defined

CMMI V1.2 Glossary and Part 2

A **managed** process
A performed process that is planned and executed in accordance with policy; employs skilled people having adequate resources to produce controlled outputs; involves relevant stakeholders; is monitored, controlled, and reviewed; and is evaluated for adherence to its process description.

A **defined** process
A managed process that is tailored from the organization's set of standard processes according to the organization's tailoring guidelines; has a maintained process description; and contributes work products, measures, and other process-improvement information to the organizational process assets.

Processes and process descriptions

A defined process clearly states the purpose, inputs, entry criteria, activities, roles, measures, verification steps, outputs, and exit criteria.

A critical distinction between a managed process and a defined process is the scope of application of the process descriptions, standards and procedures. … Another critical difference is that a defined process is described in more detail and is performed more rigorously than a managed process.

- **Scope, detail, and rigor**
 - Managed – project-unique processes developed independently
 - May be successfully implemented with less detail and less rigor (more professional judgment … “we all understand what to do”)
 - Defined – project’s processes are tailored from the organization’s standard processes
- **Use the same template at Level 2 and Level 3**
 - Facilitate migration and reuse
Process description defined

Process description
A documented expression of a set of activities performed to achieve a given purpose.

A process description provides an operational definition of the major components of a process. The description specifies, in a complete, precise, and verifiable manner, the requirements, design, behavior, or other characteristics of a process. It also may include procedures for determining whether these provisions have been satisfied. Process descriptions may be found at the activity, project, or organizational level.

SEI commentary (and what appraisers look for)

The concept of documented procedure is handled by the generic goal that says that you perform a process according to a managed or defined process. The definition of a "managed process" includes documenting the process and procedures that you use. The term "according to a documented procedure" is not explicitly used in the model.

(CMMI FAQ, Feb. 2002, under "Model Interpretation"; for V1.1, true for V1.2)
Chasing levels

Maturity levels are measured by the achievement of the specific and generic goals that apply to each pre-defined set of process areas. [2000-TR-30, paragraph 2, p. 23]

Conformance with a process area means that in the planned and implemented processes there is an associated process (or processes) that addresses either the specific and generic practices of the process area or alternatives that clearly and unequivocally accomplish a result that meets the goal associated with that specific or generic practice. [2000-TR-30, paragraph 2, p. 26]

... trying to skip maturity levels is usually counter-productive. [2000-TR-30, paragraph 2, p. 24]
Importance TO PROCESS IMPROVEMENT Support FOR VISION AND BUSINESS OBJECTIVES

The purpose of Integrated Project Management (IPM) is to establish and manage the project and the involvement of the relevant stakeholders according to an integrated and defined process that is tailored from the organization’s set of standard processes. [CMMI, V1.1 and V1.2, IPM, Purpose]

IPM is a cornerstone of process improvement. It enhances every Engineering, Support, and Project Management PA.

It enables continuous, systematic alignment of resources, activities, and business objectives - converging on customer value.

The way we were

© SSQC. All rights reserved. Version 21
INTEGRATED PROJECT MANAGEMENT
CMMI V1.2: Continues the evolution beyond S/W & the S/W CMM

Integrate engineering disciplines - one “book”
- Reduce influence and language of MIL-STD-2167A
- Appears more flexible, life cycle independent
- V1.2: More explicit content for engineering disciplines

IPPD - Expands scope from (software) engineering project to product delivery
- Inclusion of groups outside engineering is explicit
- V1.2 integrates IPPD into core Process Areas (IPM and OPD)

Benefits TO THE ORGANIZATION

Since the defined process of each project is tailored from the organization’s set of standard processes, variability among projects is typically reduced and projects can more easily share process assets, data, and lessons learned. (CMMI v1.1 and V1.2, IPM, Introductory Notes)

Reduced variability and a systematic multi-discipline view of product delivery translates directly into satisfying commitments to all stakeholders, including customers.

Enforced reuse of assets minimizes the cost of reinvention and lays a stable foundation for continuous improvement.
relationships and dependencies

within the project management category

integrated project management (ipm) ...

• Relies on project planning (PP) and project monitoring and control (PMC) for basic project planning and management
 • Adds basic requirements for systematic coordination
 • Adds IPPD requirements
 • Incorporates data to drive decisions
• Integrates supplier agreement management (SAM) to support outsourcing development

ipm: the specific goals

specific goals

SG 1 The project is conducted using a defined process that is tailored from the organization's set of standard processes.

SG 2 Coordination and collaboration of the project with relevant stakeholders is conducted.

SG 3 The project is managed using IPPD principles.
IPM: SG 1 Specific practices

<table>
<thead>
<tr>
<th>Specific Practice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1.1</td>
<td>Establish and maintain the project's defined process from project startup through the life of the project.</td>
</tr>
<tr>
<td>SP1.2</td>
<td>Use the organizational process assets and measurement repository for estimating and planning the project's activities.</td>
</tr>
<tr>
<td>SP1.3</td>
<td>Establish and maintain the project's work environment based on the organization's work environment standards.</td>
</tr>
<tr>
<td>SP1.4</td>
<td>Integrate the project plan and the other plans that affect the project to describe the project's defined process.</td>
</tr>
<tr>
<td>SP1.5</td>
<td>Manage the project using the project plan, the other plans that affect the project, and the project's defined process.</td>
</tr>
<tr>
<td>SP1.6</td>
<td>Contribute work products, measures, and documented experiences to the organizational process assets.</td>
</tr>
</tbody>
</table>

A critical specific practice

1.5 Manage the project using the integrated plans

- **Why:** Product delivery is beyond any one group's capabilities, responsibilities.
- **Significant Indicator(s):**
 - SP1.4, SubPractice 5, peer reviews
 - SP1.5, SubPractice 2, thresholds
- **Affected Stakeholders:**
 - Project team (Mktg … Mfg)
- **Resistance:** Accountability - being measured, reporting progress.
- **Special Appraisal Considerations and Challenges:**
 - Ensure there is adequate preparation time to review the volume of documentation.
- **Recommendations:**
 - Pilot - pick your project wisely.

Time to Market

Parallel Activities

- IMS, IMP, or...
- New Product Introduction
- Support
- Manufacturing Engineering
- Training
- Technology Transfer
- Manufacturing Master Plan
Specific practice 1.5, Subpractice 2

2 Monitor and control the project’s activities and work products using the project’s defined process, project plan, and other plans that affect the project.

This task typically includes the following:

- Using the defined entry and exit criteria to authorize the initiation and determine the completion of the tasks
- Monitoring the activities that could significantly affect the actual values of the project’s planning parameters
- Tracking the project’s planning parameters using measurable thresholds that will trigger investigation and appropriate actions
- Monitoring product and project interface risks
- Managing external and internal commitments based on the plans for the tasks and work products of the project’s defined process

See CMMI V 1.1 SP 1.4

Project management

- Models - predict
- Metrics - track
- Key performance indicators

36
SP 1.2 Use the organizational measurement repository
Model variation: set management expectations

Based on S. McConnell, "Software Project Survival Guide", page 7, MCC2

Manipulating the estimates for software
Myth 2: There is a way to get **precise, valid** estimates

valid = predictive value
precise = repeatable

What is possible: defined variance

© SSQC All rights reserved Version 21
INTEGRATED PROJECT MANAGEMENT
Software estimation accuracy

Requirements hazy, general purpose of new software clear

± 50%

Detailed design done

± 25%

IMPLEMENTATION ORIENTED ESTIMATE

± 10%

FUNCTION ORIENTED ESTIMATE

CONCEPT ORIENTED ESTIMATE

SP 1.2 Use the organizational measurement repository

Model performance: defects

CUMULATIVE DEFECTS - REPORTED VS PLANNED

EXPECTED

PROJECT 2

PROJECT 4

PROJECT 3

ACTUAL (PROJECT 2)

ACTUAL (PROJECT 3)

ACTUAL (PROJECT 4)
SP 1.2 Use the organizational measurement repository

Planning and Tracking performance: defects

CUMULATIVE DEFECTS

TIME

Reported: Fixed: Open:

R F O
50 18 32
185 81 104
278 91 187
305 110 195
320 225 95
330 302 28

CUMULATIVE EXPECTED
CUMULATIVE REPORTED
FIXED
OPEN

SP 1.2 Use the organizational measurement repository

Defects by severity

Category B Defects

Category A Defects

Expected
Actual
SP 1.2 Use the organizational measurement repository

Requirements stability

Tracking performance: product complete
(Part 2 – with project data)
Tracking performance: product complete
(Part 1 – early in the project)

The goal:
Decision support
and data-driven management

Caution:
(1) Managing a project using only historical data is like driving a car using only the rear view mirror.
(2) Managing a project without historical data is like trying to arrive at an appointment in a strange city on time without asking anyone for help.

Manipulating the estimates for software

Myth 1: Add staff, compress the schedule
- Brooks’ Law: manpower and time not interchangeable
- Based on a nominal schedule, 2x staff:
 - 20% faster
 - 6x defects
 - Coordination complexity = (n^2-n)/2
- Supported by core metrics: Size, Time, Effort, Defects (Anita Carleton, CAR1)
- GATHER DATA - Measure, learn from experience
Myth 1: Add staff ... (cont.)

Requires a change in the fundamental characteristics of the project (e.g., volume, environment)

\[t_d = \text{Calculated time of first delivery (from selected Rayleigh Curve or Boehm formula)} \]

\[t_o = \text{Cost optimal time (least effort and cost)} \]

Roetzheim, ROE1; DOD1; DeMarco, Controlling Software Projects, Youdon Press, New York, 1982

Manipulating the estimates for software

Myth 3: Reuse will save us

- To build in reusability: 2x effort
 - Per class library - from 20 to 40 days
 - Design, inspection, documentation
- Library maintenance
 - Coordinating obsolescence
- Learning curve (6 to 12 months)
 - Library consultant per 4 projects
 - Maintain, communicate, advise, mentor

PAG1, Meilir Page-Jones
Manipulating the estimates for software

Myth 4: Assume we’ll make it up later (somehow)

Arbitrarily cut time from activities that are further out (and for which estimates are inherently less accurate and defensible)

- Projects over budget when only 15% complete usually complete with overruns
- Actual completion costs will not improve by more than 10% of the current percent overrun
- For commercial projects
 - 10% late ~ 30% loss in profit
 - 50% cost overrun ~ 3% loss in profit

IPM: Specific goals and practices (cont.)

SG 2 Coordination and collaboration of the project with relevant stakeholders is conducted.

SP 2.1 Manage the involvement of the relevant stakeholders in the project.

SP 2.2 Participate with relevant stakeholders to identify, negotiate, and track critical dependencies.

SP 2.3 Resolve issues with relevant stakeholders.

V1.1 and V1.2
A critical specific practice

2.2 Manage [critical] dependencies

WHY: make dependencies continuously visible, mitigate or prevent impact

SIGNIFICANT INDICATOR(S):
- SP2.2, SubPractice 5 - document the critical dependencies and commitments

AFFECTED STAKEHOLDERS:
- Project team (Mktg … Mfg)

RESISTANCE:
- Exposure - versus milestone chicken \((or \ R = v / \pi) \)

SPECIAL APPRAISAL CONSIDERATIONS AND CHALLENGES:
- Look carefully at SubPractice 6 - track and take action

RECOMMENDATIONS:
- Pick a pilot project with a strong manager who understands the big picture; ensure team focuses on critical dependencies - avoid blame, focus on solutions

Specific practice 2.2, subpractice 5

5. **Document the critical dependencies and commitments.**

Documentation of commitments typically includes the following:
- Describing the commitment
- Identifying who made the commitment
- Identifying who is responsible for satisfying the commitment
- Specifying when the commitment will be satisfied
- Specifying the criteria for determining if the commitment has been satisfied
Project Planning (PP)

SG 1 Estimates of project planning parameters are established and maintained.

SG 2 A project plan is established and maintained as the basis for managing the project.

SG 3 Commitments to the project plan are established and maintained.

SPECIFIC GOALS

SPECIFIC PRACTICES

- **SP 1.1** Establish ... top-level Work Breakdown Structure (WBS)
- **SP 1.2** Establish and maintain estimates of attributes of the work products and tasks
- **SP 1.3** Define project life cycle phases ...
- **SP 1.4** Estimate ... effort and cost for work products and tasks ...
- **SP 2.1** Establish and maintain budget and schedule
- **SP 2.2** Identify and analyze risks
- **SP 2.3** Plan for data management (documentation, all forms)
- **SP 2.4** Plan for ... resources
- **SP 2.5** Plan for knowledge and skills
- **SP 2.6** Plan stakeholder involvement
- **SP 2.7** Establish and maintain the overall project plan
- **SP 3.1** Review all plans that affect the project ...
- **SP 3.2** Reconcile plan to reflect available and estimated resources
- **SP 3.3** Obtain commitment from relevant stakeholders

Life cycles and life cycles

From Project Planning (PP), Specific Practice 1.3

Define the **project lifecycle phases** on which to scope the planning effort.

The determination of a project’s lifecycle phases provides for planned periods of evaluation and decision making. These are normally defined to support logical decision points at which significant commitments are made concerning resources and technical approach. Such points provide planned events at which project course corrections and determinations of future scope and cost can be made.

© SSQC All rights reserved Version 21
INTEGRATED PROJECT MANAGEMENT

~V1.1 and V1.2

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

Tel 408-985-4476 FAX 408-248-7772
info@ssqc.com
www.ssqc.com
Life cycles and life cycles (cont.)

More from Project Planning (PP), Specific Practice 1.3

The project lifecycle phases need to be defined depending on the scope of requirements, the estimates for project resources, and the nature of the project. Larger projects may contain multiple phases, such as concept exploration, development, production, operations, and disposal. Within these phases, subphases may be needed. A development phase may include subphases such as requirements analysis, design, fabrication, integration, and verification. … Depending on the strategy for development, there may be intermediate phases for the creation of prototypes, increments of capability, or spiral model cycles.

Understanding the project lifecycle is crucial in determining the scope of the planning effort and the timing of the initial planning, as well as the timing and criteria (critical milestones) for replanning.

Life cycles and life cycles (cont.)

Guidance from IPM Specific Goal 1

The project’s defined process must include those processes from the organization’s set of standard processes that address all processes necessary to acquire or develop and maintain the product. The product-related lifecycle processes, such as the manufacturing and support processes, are developed concurrently with the product.

From the Glossary, a product lifecycle is

The period of time, consisting of phases, which begins when a product is conceived and ends when the product is no longer available for use. … A product lifecycle could consist of the following phases: (1) concept/vision, (2) feasibility, (3) design/development, (4) production, and (5) phase out.

See CMMI V1.1, Chapter 3
Life cycles and life cycles (cont.)

From the Glossary, Integrated Product and Process Development is

A systematic approach to product development that achieves a timely collaboration of relevant stakeholders throughout the product lifecycle to better satisfy customer needs.

Guidance from RD Specific Practice 1.2

Relevant stakeholders representing all phases of the product's lifecycle should include business as well as technical functions. In this way, concepts for all product-related lifecycle processes are considered concurrently with the concepts for the products. Customer requirements result from informed decisions on the business as well as technical effects of their requirements.
Extreme programming and pair programming

End users, development team determine which requirements will be implemented and set intended release dates.

Development team factors in tasks from the release plan, unfinished tasks, bugs that must be addressed.

Stand-up meeting: individual tasks assigned; pair negotiation begins.

Programmers paired so that they may begin pair programming process.

Programmers create new unit tests; reexamine past unit tests that failed; assess failed user acceptance tests.

Programmers work in pairs on the same code to complete tasks more quickly and to increase code quality.
Extreme programming - as a process flow

User Stories

Requirements

System Metaphor

Architectural Spike

Release Planning

Test Scenarios

NEW USER STORY, PROJECT VELOCITY

BUGS

CUSTOMER APPROVAL

Small Releases

Iteration

Acceptance Tests

Spike

Uncertain Estimates

Confident Estimates

Next Iteration

Release Plan

LATEST VERSION

Wells, WEL2

© SSQC. All rights reserved. Version 21
INTEGRATED PROJECT MANAGEMENT

Unified Process Life Cycle

INCEPTION ELABORATION CONSTRUCTION TRANSITION

CORE PROCESSES

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

CORE SUPPORTING PROCESSES

Config./Change Mgt.

Project Management

Environment

Project Monitoring and Control (PMC)

SG 1 Actual performance and progress of the project are monitored against the project plan.

- **SPECIFIC GOALS**
 - Monitor actuals against the plan:
 - SP 1.1 Parameters
 - SP 1.2 Commitments
 - SP 1.3 Risks
 - SP 1.4 Data management
 - SP 1.5 Stakeholder involvement
 - SP 1.6 Periodically review progress, performance, issues
 - SP 1.7 Review accomplishments and results at selected milestones

- **SPECIFIC PRACTICES**
 - SP 2.1 Collect and analyze the issues and determine the corrective actions necessary to address the issues.
 - SP 2.2 Take corrective action on identified issues.
 - SP 2.3 Manage corrective actions to closure … complete … effective.

SG 2 Corrective actions are managed to closure when the project’s performance or results deviate significantly from the plan.

- **NOTE** The word *dependency* does not appear in Project Monitoring and Control.

Integrated Product and Process Development (IPPD)

With IPPD you get:

- Two new specific goals, one each for:
 - Integrated Product Management (IPM)
 - Organizational Process Definition (OPD)
- Amplification in various other Process Areas
- Less
 - Two fewer Process Areas (OEI and IT)
 - Four fewer goals (OEI - 2, IT - 2, IPM - 1, OPD + 1)
IPPD: Specific goals for Integrated Project Management (IPM)

<table>
<thead>
<tr>
<th>SG 1</th>
<th>The project is conducted using a defined process that is tailored from the organization's set of standard processes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG 2</td>
<td>Coordination and collaboration of the project with relevant stakeholders is conducted.</td>
</tr>
<tr>
<td>SG 3</td>
<td>The project is managed using IPPD principles.</td>
</tr>
</tbody>
</table>

SPECIFIC PRACTICES

SP 3.1	Establish and maintain a shared vision for the project.
SP 3.2	Establish and maintain the integrated team structure for the project.
SP 3.3	Allocate requirements, responsibilities, tasks and interfaces to teams in the integrated team structure.
SP 3.4	Establish and maintain integrated teams in the structure.
SP 3.5	Ensure collaboration among interfacing teams

Case Study: AJ OY

AJ OY AMERICAS SALES MARATHON
WHATEVER IT TAKES!
Integrated Product and Process Development (IPPD) - Beyond IPM

- New Specific Goal for OPD
- Implementation considerations and recommendations
 - Tools and techniques
 - A road map
V1.1: Organizational Environment for Integration (OEI)

SPECIFIC GOALS

SG 1 An infrastructure that maximizes the productivity of people and affects the collaboration necessary for integration is provided.

SG 2 People are managed to nurture the integrative and collaborative behaviors of an IPPD environment.

V1.2: Organizational Process Definition (OPD)

SPECIFIC GOALS

SG 2 Organizational rules and guidelines, which govern the operation of integrated teams, are provided.

SPECIFIC PRACTICES

SP 2.1 Establish and maintain empowerment mechanisms to enable timely decision making.

SP 2.2 Establish organizational rules and guidelines for structuring and forming integrated teams.

SP 2.3 Establish and maintain organizational guidelines to help team members balance their team and home organization responsibilities.

V1.2: Integrated Project Management (IPM)

SPECIFIC GOALS

SG 3 The project is managed using IPPD principles.
Suggestions and comments: tools and techniques for integrated teams

- Periodic project reviews
 - The Key Deliverables Review (KDR)
- Milestone/Phase reviews
 - Checklists
- Earned Value as an approach
- Planning and replanning
 - Granularity

KDRs - The simple truth

<table>
<thead>
<tr>
<th>WBS/DESCRIPTION</th>
<th>ORIGINAL</th>
<th>START</th>
<th>CURRENT</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Requirements baselined</td>
<td>01/07</td>
<td>01/21</td>
<td>01/13</td>
<td></td>
</tr>
<tr>
<td>2 System design baselined</td>
<td>01/31</td>
<td>2/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Control subsystem</td>
<td>7/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Design baselined</td>
<td>3/07</td>
<td>3/21</td>
<td>3/14</td>
<td></td>
</tr>
<tr>
<td>3.2 Prototype completed</td>
<td>5/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Prototype concept test completed</td>
<td>7/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Propulsion subsystem</td>
<td>9/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Design baselined</td>
<td>2/18</td>
<td>2/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Prototype completed</td>
<td>7/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Prototype concept test completed</td>
<td>9/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Control/Propulsion Integrated</td>
<td>12/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Control/Propulsion Integration Test</td>
<td>12/31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS

2 Resources not available to take advantage of early completion of 1
3.1 Adjusted for 1 week slip in 1
Expect to make up time and not slip subsequent steps by adding 1 engineer to project.
Tracking performance against the plan: Earned Value

- Assumes regular time or effort reporting
 - Sufficient detail to identify work product and activity
- System(s) to report
 - Cost or effort against plan
 - Completion of work against plan

Planning versus reality

Q: May I please see the design.
A: Well, we just pulled it back to do some more work on it, but we’re way ahead of schedule on the code and we’re about to start some testing.
A familiar example: How am I doing?

THIS MONTH

BALANCE: $1,700

DAY: 1 8 15 22 29

FOOD: $100

FOOD: $150

TELEPHONE: $50

TRANSPORTATION: $300

EXPENSE BUDGET
Utilities $100
Housing $1,000
Telephone $30
Food ($125/wk) $500
Transportation $70
TOTAL $1,700

NATURAL FACTORS
- AMOUNT BUDGETED
- ACTUAL AMOUNT SPENT
- SPEND RATE - incremental expenses

Performance indices

Cost Performance Index

Schedule Performance Index

TIME

Monitor Late Starts

© SSQC. All rights reserved. Version 21
INTEGRATED PROJECT MANAGEMENT
Monitor late starts to detect **figuring**

DEFERRED START REPORT - 01/14

<table>
<thead>
<tr>
<th>WBS</th>
<th>DESCRIPTION</th>
<th>ORIGINAL</th>
<th>LAST</th>
<th>CURRENT</th>
<th>ACTUAL</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Beta Algorithm Detailed Design</td>
<td>01/07</td>
<td>01/21</td>
<td></td>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>15.1</td>
<td>Alpha Algorithm Test Specification</td>
<td>01/07</td>
<td>01/14</td>
<td>01/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Fault Tree Test Specification</td>
<td>01/07</td>
<td>01/14</td>
<td>01/21</td>
<td></td>
<td>LO</td>
</tr>
<tr>
<td>19.1</td>
<td>High Performance Beta Plan</td>
<td>12/01</td>
<td>01/14</td>
<td>01/21</td>
<td></td>
<td>HI</td>
</tr>
</tbody>
</table>

COMMENTS ON HIGH RISK ITEMS

12.1 The assigned engineer has still not been released from the previous assignment. Current release date is 1/15. Another engineer has been assigned as a back up, but is just starting to learn the class library.

19.1 Marketing has still not identified a target customer. This is not a significant issue since the generic high-performance beta plan only needs to be tailored for the specific customer’s configuration.

**IPM: Required ordering? ** *No, but …*

There is a natural, logical ordering.
Examining the Generic Practices through 3.2

GG2		GG3	
2.1	Establish an organizational policy	3.1	Establish a defined process
2.2	Plan the process	3.2	Collect improvement information
2.3	Provide resources		
2.4	Assign responsibility		
2.5	Train people		
2.6	Manage configurations		
2.7	Identify and involve relevant stakeholders		
2.8	Monitor and control the process		
2.9	Objectively evaluate adherence		
2.10	Review status with higher level management		

The [Integrated Project Management] process is institutionalized as a managed process.

The [Integrated Project Management] process is institutionalized as a defined process.

- **Address in Project Planning policy:** require processes be followed
 ... or in a general policy that requires that processes be followed

- **Address as tasks in Project Planning procedures** for planning and re-planning throughout life cycle – augmented for Integrated Project Management activities

- ❌ MORE ON OP 2.2 LATER
Examining the Generic Practices through 3.2 (cont.)

Two stages of training:
- During implementation and roll-out
 - Address development and delivery of initial training in Integrated Project Management portion of CMMI implementation plan
 - Identify role-based skills needs
 - Address development and piloting of on-going training capability as part of implementation plan
- On-going, post-implementation delivery
 - Address in "operator" skills requirements in Project Planning procedures
 - Add role-based skills needs to procedures [team related skills]
 - Identify sources of training
 - Assign responsibility for providing (e.g., immediate manager)

See Organizational Training (OT) Process Area

Examining the Generic Practices through 3.2 (cont.)

Address as tasks in the Project Planning procedures:
- Identify, control [revise, update], status, audit
- Configuration management of planning work products
- Examples of the work products of the project planning process include:
 - Estimates and assumptions
 - Historical data
 - Models
 - WBS
 - Plans
 - Schedules
 - Team charters
 - IPT processes
 - IPT hierarchy (SEIT, IIPT) – responsibility and authority

See the Configuration Management (CM) Process Area
Examining the Generic Practices through 3.2 (cont.)

- Address in tasks for planning, review and approval in Project Planning procedures (change requests, artifacts)

GG2	2.1 Establish an organizational policy
	2.2 Plan the process
	2.3 Provide resources
	2.4 Assign responsibility
	2.5 Train people
	2.6 Manage configurations
	2.7 Identify and involve relevant stakeholders
	2.8 Monitor and control the process
	2.9 Objectively evaluate adherence
	2.10 Review status with higher level management

- Address as tasks in Project Planning procedures for planning the planning and replanning process (GP 2.2) and reporting (phase dependent)
 - Based on selected product life cycle
 - Consider whether planning tools can automatically produce relevant measures
 - Change requests - status, progress
 - Plan content - per cent complete
 - Effort expended in planning and replanning activities

- Address as tasks in Project Planning procedures for planning the planning and replanning process (GP 2.2) and reporting (phase dependent)
 - Provide checklists to support objective evaluation of Project Planning work products and activities - as augmented by IPM work products and activities

- Address as tasks for review of activities by higher-level management in Project Planning procedures
 - and as part of the Process and Product Quality Assurance (PPQA) process(es)
 - Provide checklists to support objective evaluation of Project Planning work products and activities - as augmented by IPM work products and activities

- Address as tasks for review of activities by higher-level management in Project Planning procedures
 - and as part of the standard reporting in the Project Monitoring and Control (PMC) Process Area
Examining the Generic Practices through 3.2 (cont.)

<table>
<thead>
<tr>
<th>GG2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Establish an organizational policy</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Plan the process</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Provide resources</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Assign responsibility</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Train people</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Manage configurations</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Identify and involve relevant stakeholders</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Monitor and control the process</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Objectively evaluate adherence</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Review status with higher level management</td>
<td></td>
</tr>
</tbody>
</table>

Tailoring
- Include a tailoring section in the Project Planning procedures
 - Options
 - Eligibility or selection criteria
 - Include as "if" statements in procedure
- Allow for substitutions and exemptions
 - Contract or business requirements

<table>
<thead>
<tr>
<th>GG3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Establish a defined process</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Collect improvement information</td>
<td></td>
</tr>
</tbody>
</table>

Define in scope statement in the Project Planning policy or procedures

Define output and tasks in the Project Planning procedures

- Process change requests
 - Submission (how, who to?), evaluation, approval
 - Identify process owner(s)
- Ensure that the Project Planning processes and, if appropriate, the tool automatically generate suitable data to support management’s information needs
 - Change requests - status, progress
 - Plan content - percent complete
 - Effort expended in Project Planning (and replanning) activities
 - Integrated Project Management (IPM)
 - SP 1.5: contribute work products and measures
Generic Practice 2.2 Revisited

GP 2.2 Establish and maintain the plan for performing the process.

The plan typically includes the following:

- Process description[s]
- Standards and requirements for the work products and services of the process(es)
- Specific objectives for the performance of the process (quality, time, etc.)
- Dependencies
- Resources
- Responsibility and authority
- Training needed
- Work products to be placed under configuration management, level of management
- Measurement
- Involvement of stakeholders
- Activities for monitoring and control
- Objective evaluation activities of the process
- Management review activities for process and work products

Schedule: when in life cycle and what level

GG 2 and GP 2.2 apply to and appear in every Process Area

For Project Planning, GP 2.2 addresses PLAN THE PLAN

- May not be a project yet
- Incorporate planning for IPM tasks and activities

GP 2.2 and the other GPs

GP 2.2 Establish and maintain the plan for performing the process.

The plan typically includes the following:

- Process description[s]
- Standards and requirements for the work products and services of the process(es)
- Specific objectives for the performance of the process (quality, time, etc.)
- Dependencies
- Resources
- Responsibility and authority
- Training needed
- Work products to be placed under configuration management, level of management
- Measurement
- Involvement of stakeholders
- Activities for monitoring and control
- Objective evaluation activities of the process
- Management review activities for process and work products

V1.1 and V1.2

2.1 Establish an organizational policy
2.2 Plan the process
2.3 Provide resources
2.4 Assign responsibility
2.5 Train people
2.6 Manage configurations
2.7 Identify and involve relevant stakeholders
2.8 Monitor and control the process
2.9 Objectively evaluate adherence
2.10 Review status with higher level management
3.1 Establish a defined process
3.2 Collect improvement information
Generic Practice 2.2 Revisited (cont.)

Generic Practice 2.2, Subpractice 1

1. Define and document the plan for performing the process.

This plan may be a stand-alone document, embedded in a more comprehensive document, or distributed across multiple documents. In the case of the plan being distributed across multiple documents, ensure that a coherent picture of who does what is preserved. Documents may be hardcopy or softcopy.

Tools and tips

- No shortage of tools (free and otherwise) for collaboration,
- BUT ...
 - Process first
 - Tools second
Start-up checklist for Integrated Project Management

1. Define product life cycles
 - Define and align subordinate life cycles and functional area processes
2. Define interfaces with internal organizations
 - Establish risk management process (critical dependencies)
 - Establish change management process
 - Apply appropriate metrics
3. Align organization with life cycle
4. Align working environments and collaboration tools
5. Ensure training takes place

Typical implementation opportunities - Business acquisition and proposal

1. Define interfaces with internal organizations
2. Requirements analysis - capability
3. Requirements definition
4. Requirements change management
5. Estimation
Typical implementation opportunities - Development

1. Engineering lifecycle definition
2. Requirements management
3. Planning and project management
 - Estimation
 - Verification and validation

4. Configuration management
 - Controls for change
5. Maintenance
 - Lifecycle scaleability
 - External problem resolution
Typical implementation opportunities - Manufacturing

1. Define interface with Engineering/Development
2. Planning to ensure capability to meet commitments
 - New business (resources and training)
 - New types of product (process engineering)
3. Integrate quality functions
4. Automate systems to greatest extent practical

Typical implementation opportunities - Services and Support

1. Define interfaces with internal organizations
2. Planning to ensure capability to meet commitments
 - New business (resources and training)
 - New types of service (process engineering)
3. Automate systems to greatest extent practical
Contact Information

Bill Deibler
Software Systems Quality Consulting
2269 Sunny Vista Drive
San Jose, CA 95128
Phone 408-985-4476 Fax 408-248-7772
deibs@ssqc.com

www.ssqc.com
Vignettes

<table>
<thead>
<tr>
<th>1. The Devil's Advocate</th>
<th>MOTIVATION of Senior Engineer</th>
<th>IMPACT of Senior Engineer's Actions</th>
<th>YOUR ACTION (Project Engineering Manager)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a senior engineer who is well-respected by his peers for his technical acumen, but who raises objection after objection to any proposed course of action. His objections are always supported by an overwhelming army of facts. His background and experience make him essential to the project team.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>You are a Project Engineering Manager, to whom the senior engineer reports. What can you do?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. The Pressure Cooker

There is an engineer who dependably produces world-class work products, but who works best under pressure. He spends a great deal of time thinking about the assignment, working on problems, helping other people. As a result, the bulk of his truly brilliant work is produced just before the deadline.

You are a Project Engineering Manager, to whom the engineer reports. What can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of Engineer</th>
<th>IMPACT of Engineer’s Actions</th>
<th>YOUR ACTION (Project Engineering Manager)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Teflon

Engineers immediately label any schedule slippage or cost overrun as due to changes over which they have no control.

Requirements changed. The design evolved based on experience with the product. People resigned and were replaced with less experienced engineers. People were added. Resources were temporarily reassigned to emergencies. Assigned resources were not available when they were supposed to be. They were held up on other projects that were (also) running longer than anticipated.

You're the Project Manager, to whom the engineering project managers come with their explanations. What can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of Engineers</th>
<th>IMPACT of Engineers’ Actions</th>
<th>YOUR ACTION (Project Manager)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Sinatra

Based on a flash of inspiration, the software engineer saw a better way to implement the requirement. Not only was less code required, the code was less complex, more maintainable, offered better exception handling, and seemed to represent a more effective basis for any future enhancements that might be required.

The simplicity of the new solution made it appear feasible to scrap what had been done and still finish the new code on time, by the end of the week.

And he did.

You are a Project Engineering Manager, to whom the engineer reports. What can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of Engineer</th>
<th>IMPACT of Engineer’s Actions</th>
<th>YOUR ACTION (Project Engineering Manager)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Cleo - the view from the top

The software manager told the Vice-President (VP) of Engineering that, after some investigation, it appeared the software could not be ready as early as the new hardware. The software manager proposed an alternative date for system test that would slip the product release by 2 months (on a 9 month project).

The VP’s response was that a two month slip was unacceptable and that the software manager needs to find a way to bring his part of the project in line with the hardware schedule.

You are the Vice-President of Engineering. What else can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of Software Manager</th>
<th>IMPACT of Software Manager’s Actions</th>
<th>YOUR ACTION (VP of Engineering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPM PA Workbook Version 20
© Software Systems Quality Consulting
All rights reserved.
info@ssqc.com, www.ssqc.com
408-866-4792
6. Cleo - the other side

The software manager told the Vice-President (VP) of Engineering that, after some investigation, it appeared the software could not be ready as early as the new hardware. The software manager proposed an alternative date for system test that would slip the product release by 2 months (on a 9 month project).

The VP’s response was that a two month slip was unacceptable and that the software manager needs to find a way to bring his part of the project in line with the hardware schedule.

You are the Software Manager. What can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of VP Engineering</th>
<th>IMPACT of VP Engineering’s Actions</th>
<th>YOUR ACTION (Software Manager)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The software manager told the Vice-President (VP) of Engineering that, after some investigation, it appeared the software could not be ready as early as the new hardware. The software manager proposed an alternative date for system test that would slip the product release by 2 months (on a 9 month project).

The VP’s response was that a two month slip was unacceptable and that the software manager needs to find a way to bring his part of the project in line with the hardware schedule.

The software manager went back and did some backward planning. By overlapping previously sequential activities and replacing some estimates with the best case numbers, the software manager was able to tweak Microsoft project into producing a plan that ended close enough to the hardware date to satisfy the VP of Engineering.

You are the Project Manager (responsible for delivering the hardware and software). What can you do?

<table>
<thead>
<tr>
<th>MOTIVATION of Software Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT of Software Manager’s Actions</td>
</tr>
<tr>
<td>YOUR ACTION (Project Manager)</td>
</tr>
</tbody>
</table>

Motivation
- The software manager proposed a new plan to satisfy the VP of Engineering.

Impact
- The impact of the software manager’s actions is that the product release date will be closer to the hardware date.

Your Action
- As the Project Manager, you might need to coordinate with the software manager to ensure the hardware and software schedules align.
- Consider the implications of the software manager’s actions on the overall project timeline and adjust accordingly.
- COMMUNICATE with the VP and software manager to ensure everyone is on the same page.

You are the Project Manager. What can you do?
<table>
<thead>
<tr>
<th>MOTIVATION</th>
<th>IMPACT of ___________________’s Actions</th>
<th>ACTION of (x)_____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>of ________________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. You are the (x)___________. What can you do?
Risk Scenarios

The Forbes Project
The Forbes Project is developing a new product, which the VP of R&D promised the User Group as being available by the end of the year. It is now March 1st.

The Forbes Project requires the development of an algorithm which is based on a branch of Mathematics that is understood by only one engineer in the company. That engineer is currently developing an algorithm for another project and is committed full time to that other project for the next 4 months.

Development of the algorithm for the Forbes Project is planned to start in 4 months, so it will be ready for integration in 6 months.

The Port
To ensure the viability of its popular, cutting-edge product, MicroTome, the company has set up a project to port MicroTome from the DOS operating system to Windows NT. The project's charter is to duplicate the functionality exactly, but incorporate a real GUI, and make a few minor (well-defined) enhancements.

The charismatic project manager, Paul Miller, (PM) also plans to deliver a well-documented, object-based product that will be easily maintainable. The PM has set an aggressive schedule for the team, starting with training in Object-Oriented Techniques, C++, and GUI design. The team is made up of senior engineers who are familiar with the domain and the current product and who have excelled in maintaining the structured code in the DOS-based product.
Risk Taxonomy (see CRL1)

<table>
<thead>
<tr>
<th>CLASS</th>
<th>A. Product Engineering</th>
<th>B. Development Environment</th>
<th>C. Program Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTES</td>
<td>b. Completeness</td>
<td>a. Formality</td>
<td>a. Schedule</td>
</tr>
<tr>
<td></td>
<td>c. Clarity</td>
<td>b. Suitability</td>
<td>b. Staff</td>
</tr>
<tr>
<td></td>
<td>d. Validity</td>
<td>c. Process Control</td>
<td>c. Budget</td>
</tr>
<tr>
<td></td>
<td>e. Feasibility</td>
<td>d. Familiarity</td>
<td>d. Facilities</td>
</tr>
<tr>
<td></td>
<td>f. Precedent</td>
<td>e. Product Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td>a. Difficulty</td>
<td>b. Suitability</td>
<td>a. Type of Contract</td>
</tr>
<tr>
<td></td>
<td>c. Interfaces</td>
<td>c. Usability</td>
<td>b. Restrictions</td>
</tr>
<tr>
<td></td>
<td>d. Performance</td>
<td>d. Familiarity</td>
<td>c. Dependencies</td>
</tr>
<tr>
<td></td>
<td>e. Testability</td>
<td>e. Reliability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Hardware Constraints</td>
<td>f. System Support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Non-Developmental Software</td>
<td>g. Deliverability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Coding/Implementation</td>
<td>c. Project Organization</td>
<td>b. Associate Contractors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Management Experience</td>
<td>c. Subcontractors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Program Interfaces</td>
<td>d. Prime Contractor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e. Corporate Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f. Vendors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>g. Politics</td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td>b. Product</td>
<td>a. Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. System</td>
<td>b. Personnel Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Quality Assurance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Configuration Management</td>
<td></td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td>b. Reliability</td>
<td>a. Quality Attitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Safety</td>
<td>b. Cooperation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Security</td>
<td>c. Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Human Factors</td>
<td>d. Morale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Specifications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Study – AJ Oy

BACKGROUND

Arvid Johnson Oy (AJ) is a large, established, and well-respected company based in Finland. One of AJ’s products is KAL2 (for Kalevala 2), a system for automated inspection of discrete parts for form and finish. KAL2 includes a highly-efficient and intelligent robotic feeder and handler that selects and orients the part, a multi-mode holographic scanner, and PC-based analytical software that interprets the scanner data. The division of AJ responsible for KAL2 has pioneered and its employees hold numerous patents in robotics, in thermal and optical imaging, in ultrasonography, and in the pattern recognition algorithms embedded in the feeder, handler, and scanner firmware.

KAL2 is a worldwide product marketed and supported by sales subsidiaries responsible for a country or major market.

HARDWARE

KAL2 hardware design and manufacturing are in Finland. Major hardware projects may take from 18 to 30 months. Once the hardware detailed design is done and an accurate availability date is determined (typically at least 12 months in the future), the software organization is notified to begin analysis and planning. AJ’s goal is to ensure that any required software or software changes are planned for the quarterly release that will correspond with the hardware availability date. Defects in released hardware are rare and are the responsibility of the Hardware Engineering organization in Tampere, Finland. AJ’s strategy is to address hardware defects through software changes whenever practical.

SOFTWARE AND SERVICE

For software, AJ KAL2 Division Engineering has established Centres of Software Engineering Excellence (CSWEE) in major technology centers around the world. The CSWEEs range in size from 30 to 230 software engineers and test personnel and 10 to 20 telephone support engineers. In almost all cases, these software development centers have been created and staffed through the acquisition of subcontractors and competitors. Software releases for KAL2 occur four times each calendar year. Software releases typically alternate between maintenance releases and releases with new functionality. If necessary, this pattern is adjusted to accommodate new hardware availability.

In the United States, the sales subsidiary, responsible for the Americas, and the CSWEE are collocated in Costanoa California.

MANAGING KAL2

Changes to the core software and hardware product for KAL2 are approved by a KAL2 R&D Board of Governors that meets quarterly in Helsinki. The Board includes the Directors of the Engineering Centres of Excellence, of the Hardware Engineering organization, and of the sales subsidiaries. New core development projects are typically planned and funded at the January meeting. The other three meetings deal with reviewing proposals for consideration at the next January meeting, monitoring progress on approved programs, and setting priorities for approved programs based on changes in the marketplace.

Software bug fixes are handled by a technical committee made up of the Directors of the Engineering Centres of Excellence. Lately, the field organization (and some customers) have discovered that enhancements can be processed quickly if they are approved as bugs.

THE CSWEE’S

Each CSWEE receives funding from three sources:

- AJ KAL2 R&D funds core product development.
- AJ KAL2 sales subsidiaries fund projects to develop minor, market-specific features.
- Customers fund the development of special features for KAL2, which may include the integration of third-party hardware.

At each CSWEE, a team of software engineers, headed by a senior software engineer, is formed for each project, which may last from 1 to 9 months. Each project begins with the current version of KAL2 (or with the version the customer currently has installed). The team leader works with the funding sales subsidiary, and, as appropriate, with customers to complete the project and to secure any add-on work that might be identified in the course of the project.

The US-CSWEE currently has 2 core development projects and 16 non-core projects in progress. The largest project in the US CSWEE is jointly funded by the Americas and the Mediterranean sales subsidiaries. This project grew out of a proposal that was rejected for inclusion in the core product.

THE QUESTION

You are an internal process consultant from AJ OY. Relate the goals of Integrated Project Management (IPM), Project Planning (PP), and Process Monitoring and Control (PMC) to opportunities, situations, or potential problems you might encounter at the Costanoa CSWEE. How could implementing practices to satisfy a goal address the associated situation or problem or seize the associated opportunity to benefit the organization? The audience for your comments is senior management.

For your convenience, worksheets, with the goals and specific practices - and with room for recording potential issues and benefits - are found starting on page 63.

HUOM - WARNING - ATTENTION - ACHTUNG

Do not overtighten. Not all goals necessarily offer benefits to AJ OY. If, after a reasonable amount of individual reflection and team discussion, there does not appear to be a benefit worth presenting, move on.
Integrated Project Management (IPM)

<table>
<thead>
<tr>
<th>Specific Goals (SG) and Practices (SP)</th>
<th>Opportunity, Situation, or Potential Problem</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| **SG 1** The project is conducted using a defined process that is tailored from the organization’s set of standard processes.
 SP 1.1 Establish and maintain the project's defined process.
 SP 1.2 Use the organizational process assets and measurement repository for estimating and planning the project’s activities.
 SP 1.3 Integrate the project plan and the other plans that affect the project to describe the project’s defined process.
 SP 1.4 Manage the project using the project plan, the other plans that affect the project, and the project’s defined process.
 SP 1.5 Contribute work products, measures, and documented experiences to the organizational process assets. | | |
| **SG 2** Coordination and collaboration of the project with relevant stakeholders is conducted.
 SP 2.1 Manage the involvement of the relevant stakeholders in the project.
 SP 2.2 Participate with relevant stakeholders to identify, negotiate, and track critical dependencies.
 SP 2.3 Resolve issues with relevant stakeholders. | | |
| **SG 3** The project is conducted using the project’s shared vision.
 SP 3.1 Identify expectations, constraints, interfaces, and operational conditions applicable to the project’s shared vision.
 SP 3.2 Establish and maintain a shared vision for the project. | | |
| **SG 4** The integrated teams needed to execute the project are identified, defined, structured, and tasked.
 SP 4.1 Determine the integrated team structure that will best meet the project objectives and constraints.
 SP 4.2 Develop a preliminary distribution of requirements, responsibilities, authorities, tasks, and interfaces to teams in the selected integrated team structure.
 SP 4.3 Establish and maintain teams in the integrated team structure. | | |
Project Planning (PP)

<table>
<thead>
<tr>
<th>Specific Goals (SG) and Practices (SP)</th>
<th>Opportunity, Situation, or Potential Problem</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG 1 Estimates of project planning parameters are established and maintained.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1.1 Establish a top-level work breakdown structure (WBS) to estimate the scope of the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1.2 Establish and maintain estimates of the attributes of the work products and tasks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1.3 Define the project life-cycle phases upon which to scope the planning effort.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1.4 Estimate the project effort and cost for the work products and tasks based on estimation rationale.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 2 A project plan is established and maintained as the basis for managing the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.1 Establish and maintain the project’s budget and schedule.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.2 Identify and analyze project risks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.3 Plan for the management of project data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.4 Plan for necessary resources to perform the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.5 Plan for knowledge and skills needed to perform the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.6 Plan the involvement of identified stakeholders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2.7 Establish and maintain the overall project plan content.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 3 Commitments to the project plan are established and maintained.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 3.1 Review all plans that affect the project to understand project commitments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 3.2 Reconcile the project plan to reflect available and estimated resources.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 3.3 Obtain commitment from relevant stakeholders responsible for performing and supporting plan execution.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process Monitoring and Control (PMC)

<table>
<thead>
<tr>
<th>Specific Goals (SG) and Practices (SP)</th>
<th>Opportunity, Situation, or Potential Problem</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| **SG 1** Actual performance and progress of the project are monitored against the project plan.
 SP 1.1 Monitor the actual values of the project planning parameters against the project plan.
 SP 1.2 Monitor commitments against those identified in the project plan.
 SP 1.3 Monitor risks against those identified in the project plan.
 SP 1.4 Monitor the management of project data against the project plan.
 SP 1.5 Monitor stakeholder involvement against the project plan.
 SP 1.6 Periodically review the project's progress, performance, and issues.
 SP 1.7 Review the accomplishments and results of the project at selected project milestones. | | |
| **SG 2** Corrective actions are managed to closure when the project's performance or results deviate significantly from the plan.
 SP 2.1 Collect and analyze the issues and determine the corrective actions necessary to address the issues.
 SP 2.2 Take corrective action on identified issues.
 SP 2.3 Manage corrective actions to closure. | | |
The Key Deliverables Review

An extract from the Product Development Incorporated Engineering Handbook.

Key Deliverables Review (KDR)

The Key Deliverables Review is held monthly. It is chaired by the Chief Operating Officer (COO) and is attended by the heads of the site Engineering organizations, Operations, and Technical Support and Services. Each project is allocated a half-hour during which the project manager presents the progress of the project against standard, high-level milestones. Dependencies, issues, and risks are reviewed. In addition, each presentation may be attended by the project managers for any projects that are dependent on the project being reviewed. Each project manager provides a presentation for the meeting. Each month’s presentations, along with any action items developed in the review meeting are maintained in the Project Tracking Book by the COO Project Administrator.

A template for the presentation is provided on the next page.
Key Deliverables Review Project Presentation Template

Date

Project

Project Manager

MARK ONE

PROJECT STATUS

[] GREEN [] YELLOW [] RED

<table>
<thead>
<tr>
<th>WBS Item</th>
<th>Description</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Original Last Current Actual</td>
</tr>
<tr>
<td>▲</td>
<td>Project PRD and PP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OEM Qualification COMPLETE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Sub-System 1 DTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Sub-System 2 DTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Sub-System 3 DTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prototype test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Integration START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturing Pre-Production Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulatory COMPLETE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTS – LA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTS – GA</td>
<td></td>
</tr>
</tbody>
</table>

▲ = Mark if change from last KDR
Move Current to Last before changing Current

Changes

<table>
<thead>
<tr>
<th>WBS Item</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Issues

<table>
<thead>
<tr>
<th>Action</th>
<th>Progress</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Progress</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acronyms

- GA: General Availability
- LA: Limited Availability
- DTD: Detailed Design
- KDR: Key Deliverables Review
- PP: Project Plan
- PIP: Product Introduction Plan
- PRD: Product Requirements Document
- RTS: Release to Ship
- RTM: Release to Manufacturing
- START: Start
- WBS: Work Breakdown Structure
Sample Phase Completion Checklists

The following are selected, sample phase completion or milestone checklists.

Alpha Test Readiness Review Checklist

- Manufacturing Pre-Production Plan complete
- Validation Testing has confirmed:
 - Operation of new features, enhancements, and specified bug fixes
 - All identified operational defects are documented
 - Interoperability with previous releases, all identified interoperability exceptions are documented.
 - All identified performance shortfalls against the performance criteria in the Design Specification are documented

Approval

- Validation Manager
- Beta site coordinator(s)
- Manufacturing Manager

Beta Test Readiness Review Checklist

- Validation Testing has confirmed:
 - Features targeted for Beta are implemented and have been tested
 - No open Class A defects in the portion of the product to be exercised in the Beta Test
 - Established performance targets have been reached
 - All identified performance shortfalls against the Design Specification are documented
- Preliminary user documentation is available
- Preliminary release description is available
- Beta test planning complete (i.e., functionality to be exercised specified; agreements on file)
- Manufacturing Production Plan complete

Approval

- Product Manager
- Software Engineering development lead(s)
- Hardware development lead
- Validation Manager
- Beta site coordinator(s)
- Manufacturing Manager
Release to Ship (RTS) Readiness Review Checklist – for Limited Availability (LA)

- Validation has confirmed:
 - 100% of the features for the identified market/customer/etc. are implemented and tested
 - All performance targets are met
 - No open Class A defects
 - Four or less Class B defects
 - Load testing completed; report available
- Final user and field service documentation are available and reviewed.
- Release Description is complete and available
- Planned Beta Tests successfully completed
- Order Processing trained; order processing procedures, pricing, and part numbers are complete and available
- Sales trained; supporting external literature is complete and available
- Technical Support is trained on the new features
- Product Introduction and Support Services Plan approved
- Customer training is available for the new release
- Any approved waivers are documented with appropriate risk assessment and corrective action plans

Approval

- Product Manager
- Marketing (representing Sales)
- Project Manager
- Publications
- Manufacturing
- Regulatory compliance engineering
- Software Engineering development lead(s)
- Hardware development lead
- Validation Manager
- Legal
- Technical Support
Key Performance Indicators (KPI)

Key Performance Indicators are metrics, attributes or dimensions, of products and processes which, when measured, provide information to support project planning and management. Historical measurement data forms models for predicting performance and for establishing thresholds for taking action. Current measurement data enables management to monitor performance and make appropriate adjustments to ensure that results comply with planned arrangements. As project management skills and resources mature, plans are more accurate and adjustments are less frequent. When adjustments are necessary, they are typically less disruptive, since problems are identified as or before they occur.

The goal of a metrics program is to continuously measure selected product and process attributes and provide a flow of information that is consistent in granularity, volume, and frequency with management’s decision making capacity. Too much information, too little information, and information received too late all result in ineffective decision making.

Consider the following metrics, presented in no particular order, as key performance indicators, appropriate for various levels of management.

Metric 1: Estimation Accuracy - The Cone of Variability

The Cone of Variability models the performance of the organization’s estimation processes. The X axis represents points in the life cycle at which the balance of the project is replanned. The Y axis is calibrated for cost, schedule, or, as illustrated, for both. The Y axis is the ratio of planned values to actual values, as determined at project completion.

In the example, for Cost, at Initial Project Definition, the historical data from completed projects demonstrates that estimates of total project cost are off by a factor of 4. At Requirements Specification, estimates from replanning are from 1.5 times actuals (50% high) to .50 times actuals (50% low).

In the example, for Schedule, at Initial Project Definition, the historical data from completed projects demonstrates that estimates of the project schedule range from 1.6 times the actual schedule (e.g., estimated 12 months, completed in 7.5 months) to .60 times the actual schedule (e.g., estimated 12 months, completed in 20 months). At Requirements Specification, estimates from replanning are from 1.15 times actuals (e.g., estimated 12 months, completed in 10.4 months) to .85 times actuals (e.g., estimated 12 months, completed in 14.1 months).

It is typically appropriate to maintain models for different technologies or types of projects.

Suggested Application

During planning, the model supports establishing realistic expectations, realistic schedule buffers, and realistic budgetary reserves. As part of lessons learned, it allows the organization to identify opportunities and techniques for improvement. During the execution of the plan, the model provides thresholds that flag activities for management attention.

In the example, activities that take place between Approved Product Definition and Requirements Specification are monitored against a plan that historically ranges from 1.15 times the actual schedule to .85 times the actual schedule. An
activity planned for completion in 20 days may extend to 24 days before management intervention is appropriate. Or, if it is completed in 17 days, there is no reason for management to be concerned that something is not done - or to reward the team for beating the clock.

Comments
The values in the example represent the results of large systems projects performed under government contracts. Such projects are required to prepare detailed plans as part of the proposal process; they also tend to have significant costs in hardware components. In commercial organizations, while time to market makes maintaining schedules the highest priority, effort is underestimated by a factor of 1.9 and schedules are maintained by removing 25% to 50% of the committed features (see The Standish Group, Chaos, 1995, available at www.standishgroup.com).

Metric 2: Defects
Defects can be measured within design and development (e.g., from first integration to release) or the measurement activity can extend across the product life cycle, to include post-release defects.

In this example, all defects are counted equally. The historical data on defects is used to establish a baseline. Any significant deviation from the baseline signals a need for management attention. In the example, Project 3 and Project 4 both require attention. Is Project 4 in trouble or has it instituted a more rigorous inspection or testing strategy, which should result in much lower numbers in the future? Or is Project 4 addressing a legacy component that is virtually unmaintainable? Is Project 3 an example of exceptional quality? Or has inspection and testing been deferred? Or are the inspection and testing inadequate?

Once again, separate models may be appropriate for projects categorized by size or technology.
Since not all defects are equal, the same approach is taken for modeling and monitoring defects by severity.
In this example, cumulative reported defects and remaining open defects are represented. Labels on the open defect line provide precise counts of the Level A and Level B defects remaining open. Spreadsheet-style captions below the X axis provide complete detail on the number of new defects added to the counts.

Suggested Application

During planning, an accurate defect model enables management to predict and plan accurately for rework. During the execution of the plan, comparing defect levels to the plan (or model) identifies potential problem areas. As part of lessons learned, comparing defect levels to the plan (or model) identifies product components that are candidates for reengineering. Monitoring defect find and closure rates without a plan or model is common and useful, but without any historical reference, it promotes unnecessary stress. (The argument about not being able to afford to reengineer is most effectively countered by providing actual data on the cost of not reengineering.)
Metric 3: Project productivity

Since engineering work is rarely completed at a predictable, steady rate, measuring actual productivity enables management to identify potential problems without having to rely on questionable estimates of “per cent complete”.

In this example, time, on the X axis, is the time remaining in the plan and product per cent complete, on the Y axis, is based on modules checked into the configuration management system as ready to release. The three segments of solid line that are circled represent the highest rates of productivity achieved by the project team, as they sprinted to the various intermediate release milestones. The circled, dotted line segment represents the rate of productivity that is required to complete the project on time (100% of product complete when 100% of the time is reached). By inspection, based on the productivity rates that have already been achieved, the amount of product to complete and the time available represent a reasonable goal. Unless, of course, the last five percent of the product is the part that no-one knows how to do.

Suggested Application

Because productivity is influenced by a number of variables and is highly dependent on the team make-up, an effective use of project productivity is during execution of the later parts of the plan. Management can monitor progress against time to ensure that expectations of heroic last minute efforts are reasonable.
Metric 4: Verification activities

Comparing the completion of verification activities, like reviews, to the availability of the target work products allows management to ensure that those activities take place and that, when other organizations are involved, plans are being effectively coordinated. Any significant deviation from the plan is a signal to management to investigate.

In this example, the number of modules that have completed code review is measured against the number of modules coded (e.g., ready for review). The number of coded modules is represented by the solid line. The assumption is that 100% of these modules undergo code review. In Example 1 (the lower, dotted line), the backlog of modules that are ready for code review is fairly constant for three time periods and then appears to start increasing, as the dotted line moves further from the solid line. Management attention is indicated. Why is the project falling behind?

In Example 2, the backlog decreases dramatically. Management attention is indicated. Is the project doing an exceptional job of completing reviews? Are participants given adequate time to prepare? Or are reviews considered an academic exercise, to be disposed of with minimum effort and attention?

Metric 5: Requirements stability

Requirements changes (as recorded by the change approval process) represent a significant risk to the project. Too many can negate even the best engineering and project management processes. Too few indicate that the project may not be hearing about needed changes in a timely manner. This pent up demand inevitably surfaces late in the project (e.g., beta test) when it poses the greatest risk to the project.
In this example, there are approximately 80 requirements, as indicated by the dotted line and the scale on the right. The relatively high rate of change (6% to 10%) appears to have stabilized in the 2 to 3% range.

Metric 6: Earned value

Earned value measures performance against schedule and against budget. The cost performance index compares the actual cost of work completed to the amount budgeted for that work. The schedule performance index compares the actual amount of work completed to the amount of work planned to be completed. Earned Value allows management a view of schedule and budget performance independent of the shifts in order and priority that are managed on a daily basis at the team level. With the tools currently available for data capture and reporting, Earned Value can be considered to supplement Key Deliverables Reviews in smaller organizations.
Each index is constructed so that a value of “1” indicates “on schedule” or “on budget”. Below 1 is “bad”; above 1 is “good”. By monitoring late starts, which can be used to hide problems by shifting activities to the end of the project, management can monitor the overall health of a project. A wealth of additional information is available to support managers who need to look at the causes of potential problems identified by the indexes.

In the example, the Cost Performance Index, consistently above 1, shows that the project is spending less than budgeted; the problem is that the Schedule Performance Index shows that the project is behind schedule.
References and Contacts

<table>
<thead>
<tr>
<th>Ref</th>
<th>Item or Location</th>
<th>Description</th>
</tr>
</thead>
</table>
http://www.sei.cmu.edu/
Key Concepts: Spiral Model implementation problems, anchor points (life cycle objectives [LCO], life cycle architecture [LCA], initial operational capability [IOC]), win-win elaboration of spiral model |
| BUR1 | Burton, Dan; Over, Jim, *PSP Tutorial SEPG '98*, provided at the SEPG '99 Conference, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1998. | For PROBE |
| HAR1 | http://www.nnh.com/ev/perform.html | For Earned Value: Excellent papers from Noel N. Harroff Enterprise (NNH) |
| IFP1 | www.ifpug.org | For Function Points: Homepage of the International Function Point Users Group |
| JON1 | Jones, Capers. *Assessment and Control of Software Risk*, Prentice Hall, 1994 | For Function Points: Article available for a fee from www.sciam.com (To purchase and download, select Archive, select Log on, proceed to browse December 98.) |
| JON3 | Jones, Capers, *Why Software Fails, Software Development*, July 1996, page 49 | This article is not available on line.
Key Concepts: Careful cost estimating and schedule planning are critical success factors for software projects. The larger the project, the more important [they are],” |
<p>| KAY1 | Kayser, Thomas A.; Mining Group Gold, Serif Publishing (A Division of Xerox Corporation), 1990; ISBN 1-878567-02-0 | Managing group interaction in meetings |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Item or Location</th>
<th>Description</th>
</tr>
</thead>
</table>
See also CAR1.
Key Concepts: Discussion of core metrics (Size, Time, Effort, Defects) at end of article. |
See also CAR1.
Key Concepts: Discussion of core metrics (Size, Time, Effort, Defects) at end of article. |
Key Concepts: “[While] Some project managers try to shorten ... schedules by reducing quality assurance practices such as design and code reviews ... [studies show that] projects that achieve the lowest defect rates also achieve the shortest schedules.” (page 39)
The figures are not included in the online version, but the verbal description of Figure 1 identifies the 95% defect removal level as optimum for reducing development time. (page 40)
“Reworking defective requirements, design, and code typically consume 40% to 50% of the total cost of software development.” (page 41)
“Every hour you spend on defect prevention will reduce repair time from three to ten hours.” (page 41)
“Reworking a ... requirements problem once the software is in operation typically costs fifty to two hundred times what it would take to rework the problem in the requirements stage.” (page 41)
“... about 60% of all defects usually exist by design time.” (page 41)
See the section on “Additional Reading” in the side bar at the end of the article, on page 42. |
| OSD1 | http://www.acq.osd.mil/pm/ | Program Management homepage of the Office of the Secretary of Defense. See
[NOTE: While the formulas and method appear to be sound, the actual data reported is suspect.] |
| PMI1 | http://www.pmi.org/ | Homepage of the Project Management Institute (PMI) |
| PRE1 | General Information Resources | An excellent set of references related to estimation techniques and various models is found at:
http://www.premia.com/support/starestimator/weblibrary/resource.html |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Item or Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM1</td>
<td>Practical Software Measurement, A Foundation for Objective project management, Office of the Undersecretary of Defense for Acquisition and Technology, 1998</td>
<td></td>
</tr>
<tr>
<td>ROE1</td>
<td>Roetzheim, William H., Estimating Internet Development, Software Development, August 2000, page 70</td>
<td>http://www.sdmagazine.com/articles/2000/0008/0008d/0008d.htm Key Concepts: Parameters for estimation can include function points (for data-driven applications), GUI metrics (menus, dialogs, windows), and object metrics. A project schedule can be compressed or expanded within a range of 75% to 200%.</td>
</tr>
<tr>
<td>SDM1</td>
<td>http://www.sdmagazine.com/supplement/ppm/</td>
<td>Software Development Magazine Project Management home page</td>
</tr>
<tr>
<td>SEI1</td>
<td>http://www.sei.cmu.edu/pdspsp.html</td>
<td>For PROBE: The Personal Software Process (PSP) home page at the Software Engineering Institute</td>
</tr>
<tr>
<td>SEP1</td>
<td>http://sepo.spawar.navy.mil/docs.html or http://sepo.nosc.mil/docs.html</td>
<td>A complete set of downloadable documents for all KPAs from the Software Engineering Project Office (SEPO), Space and Naval Warfare Systems Center, San Diego, (SSC SD)</td>
</tr>
<tr>
<td>THI1</td>
<td>Thielen, David, The Commando Returns, Software Development, March 1999, page 80</td>
<td>Not available on line. Key Concepts: “As projects get larger and more complex, projects get larger and more complex, good practices, design, and planning are the best approaches to project management.”</td>
</tr>
<tr>
<td>WEL1</td>
<td>Wells, J. Donovan, Planning Feedback Loops</td>
<td>For Extreme Programming http://www.extremeprogramming.org/map/loops.html Key Concepts: Time frames between phases; phase activities</td>
</tr>
<tr>
<td>WEL2</td>
<td>http://www.extremeprogramming.org</td>
<td>For Extreme Programming J. Donovan Wells Extreme programming home page Key Concepts: Detailed descriptions of activities, tools, references to articles, etc.</td>
</tr>
</tbody>
</table>
Partial List of Tools and Contacts

<table>
<thead>
<tr>
<th>Provider</th>
<th>Planning</th>
<th>Tracking</th>
<th>Resource Management</th>
<th>Risk Management</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT Corporation</td>
<td>Planner™ Workbench™</td>
<td>Publisher™ Team™ Connect™</td>
<td>Repository™ Resource™</td>
<td></td>
<td>ABT Corporation 361 Broadway New York, NY 10013 Tel: (212) 219-8945 www.abtcorp.com</td>
</tr>
<tr>
<td>Artemis Management Systems</td>
<td>Views 4</td>
<td></td>
<td></td>
<td></td>
<td>Artemis Management Systems 6260 Lookout Road Boulder, Colorado 80301 Tel: (800)477-6648 www.artemispm.com</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>Project™</td>
<td>Project Central/ Project Server</td>
<td>Project™</td>
<td></td>
<td>Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 (800) 426-9400 www.microsoft.com</td>
</tr>
<tr>
<td>Nikū</td>
<td>Portfolio Manager Suite</td>
<td></td>
<td></td>
<td></td>
<td>Appears to include Bridge Modeler and Project Manager’s Work Bench formerly from Applied Business Technology (ABT), which was acquired by Nikū in August 2000. World Headquarters 305 Main Street Redwood City, CA 94063 Tel: +1 650 298 4600 Fax: +1 650 298 4601</td>
</tr>
<tr>
<td>PlanView Inc.</td>
<td>PlanView</td>
<td></td>
<td></td>
<td></td>
<td>PlanView Inc. 7320 North MoPac #300 Austin, TX 78731 Tel: (512) 346-8600 www.planview.com</td>
</tr>
<tr>
<td>Primavera Systems, Inc.</td>
<td>TeamPlay™</td>
<td></td>
<td></td>
<td></td>
<td>Primavera Systems, Inc. Three Bala Plaza West Bala Cynwyd, PA 19004 Tel: (800) 423-0245 www.primavera.com</td>
</tr>
<tr>
<td>Scitor Corporation</td>
<td>Project Scheduler</td>
<td>Project Communicator</td>
<td></td>
<td></td>
<td>Scitor Corporation 256 Gibraltar Drive Sunnyvale, CA 94089 Tel: (800) 533-9876 www.scitor.com</td>
</tr>
<tr>
<td>Provider</td>
<td>Planning</td>
<td>Tracking</td>
<td>Resource Management</td>
<td>Risk Management</td>
<td>Contact</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Software Program Managers Network</td>
<td>Project Control Panel</td>
<td>Risk Radar</td>
<td>SPMN 4600 N. Fairfax Drive Arlington, VA 22203 (703) 521.5231 www.spmn.com (both products are available for download at no cost)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Target</td>
<td>Project Updater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provider</th>
<th>Cost/Size/Metrics</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galoreth, Inc.</td>
<td>SEER</td>
<td>Galoreth Incorporated 100 North Sepulveda Boulevard Suite 1801 El Segundo, CA 90245 Phone 310-414-3222 Fax 310-414-3220 http://www.gaseer.com</td>
</tr>
<tr>
<td>Software Productivity Research (SPR)</td>
<td>KnowledgePLAN®</td>
<td>Software Productivity Research Three Bethesda Metro Center Suite 700 Bethesda, Maryland 20814 Tel. 301.657.6266 Fax 301.942.4361 http://www.spr.com</td>
</tr>
<tr>
<td>USC (Dr. Barry Boehm)</td>
<td>COCOMO II</td>
<td>http://sunset.usc.edu/available_tools/index.html USC Center for Software Engineering, free, downloadable tools, including COCOMO II The main address for COCOMO tools is http://sunset.usc.edu/research/cocomosuite/suite_main.html</td>
</tr>
</tbody>
</table>
82nd printing