7.62mm, Lethal Limited Range Round ($\mathrm{L}^{2} \mathrm{R}^{2}$)
(US Coast Guard)

NDIA 2006

Prepared by:

Chad Sensenig

Small Caliber Ammunition US Army,
ARDEC

Sung Chung
Aeroballistics US Army, ARDEC

Objectives:

Design, develop, and demonstrate a 7.62 mm Lethal Limited Range Round ($\mathrm{L}^{2} \mathrm{R}^{2}$) to meet the unique needs and requirements of the US Coast Guard for use in harbor security applications. This ammunition will be fired from mounted 7.62 mm , M240 Machine Guns or M14 rifles and will be capable of engaging and defeating a variety of seagoing vessels and personnel targets while reducing maximum range to minimize collateral damage to the areas surrounding the locations where the round will be employed.

Goals:

-Must function the M14 rifle and M240B machine gun with no weapon adapters / modifications.
-Defeat $1 / 4$ inch of mild steel set at 30 -degree obliquity angle at 200 meters.
-Effective against soft targets out to a range of at least 400 meter.
-Maximum range of $\mathbf{2 0 0 0}$ Meters ($\mathbf{1 5 0 0}$ Meters desirable)

Previous In-house Limited Range Effort

Caliber .50 and 5.56mm Limited Range Training
Ammunition (LRTA) Programs
Caliber . 50 LRTA
Requirements:

- Match M33 to 1000 meters not more than 1 mil error.
- Range not to exceed 2500 meters.
- Price not to exceed M33 cartridge.

Tested Designs:
4 designs were tested in Ft. Dix Small Caliber Test Range

- Non-conical boat tail design.
- Corkscrew boat tail design.
- Straight fin design.
- Canted fin design.

Caliber . 50 LRTA Test Results (Cd Vs Mach Numbers)

50 CAL LRTA NON-CONICAL BOATTAIL

50 CAL LRTA
CORKSCREW BOATTAIL I

50 Cal Limited Range Training Ammunition Drag Vs Mach Number

50 Cal Limited Range Training Ammunition
Drag Vs Mach Number
Test Was Performed in Ft. Dix Small Caliber Test Range $\quad \rightarrow$ corkscrew boattail design

Caliber . 50 LRTA Test Results
 (Cd Vs Mach Numbers)

$$
\begin{aligned}
& 50 \mathrm{CAL} \text { LRTA } \\
& \text { TAPERED FIN I }
\end{aligned}
$$

OIMENSIONS ARE IN INCHES

Continue

Design Approach on $7.62 \mathrm{~mm} \mathrm{~L}^{2} \mathrm{R}^{2}$

- 7.62 mm M80 external shape with the base straight fin is chosen for the design study.
- The base fin is designed to have sufficient fin area to create instability after meeting the effective range requirement. It will also increase the drag while unstable.
- Projectile mass properties are designed to minimize the max range and optimized launch stability while fulfilling the penetration requirement.
7.62mm L²R2 Projectile Design Study Results

7.62mm L² R^{2} USCG 6-Dof Trajectory Simulation

Design of Prototype Projectile

Design of Non-Finned Projectiles

Test I:

Testing of Non-Finned Projectiles

- Test Projectile
- Lead time shorter than finned prototypes
- Facilitated charge establishment
- Verified adequate case capacity was available
- Occupied the same case volume rear of the cannelure
- Verified weapon function and feeding
- Identical CG to finned projectile
- Identical ogive to finned projectile

Test II:

Testing of Finned Prototypes

Corrective Actions to Projectiles

- Tightened tolerances on:
- Jacket and internal parts
- Boat tail
- Applied adhesive to internal mating surfaces

Test III:

Testing of Finned Prototypes Rev. I

Corrective Actions to Projectiles

- Tighten Tolerances on boat tail
- High speed video indicated fins were deforming at launch
- Fin nesting redesigned
- Eliminate anodization of fins

Test IV:

Testing of Finned Prototypes Rev. II

Test IV:

High Speed Video

Test VI:

Hard Target Penetration Testing

- 1/4" A36 Mild Steel
- 200 meters
- 60 degree obliquity angle
- 10 Rounds fired, ALL perforated

Summary

- Current projectile design satisfies penetration requirements
- Additional design modifications have been made to further improve accuracy
- Radar testing to verify the maximum range of the projectile has been scheduled

