Ruptured Case in the M249 SAW

A Finite Element Analysis
Who am I?

Clinton Fischer

Weapons Systems and Technology
Weapons Technology Branch

RDECOM-ARDEC
Picatinny Arsenal, NJ 07806-5000
Introduction

- Modeling and Simulation saves time and money
- Impractical to do real world tests on some failures
What Happened

- Incidences of the M855 cartridge case rupturing during normal firing of the M249 Saw
- Cause was unable to be determined during live fire
What Do We Need to Know

- Do the tolerances of the cartridge case need to be more stringent?

- If so, which tolerances are causing the problem; and how much do they need to changed?
What Can Contribute

- Separate Tolerances
- Tolerance Stack-Up
- Hardness Gradient
Setup

- Geometry
- Internal Pressure from Propellant
- Extraction taken from T-D Curve
- Materials – Brass Hardness Gradient
Preliminary Modeling

- Axi-symmetric Model
- Several scenarios were considered
Observations

- No rupture in nominal case
- Longitudinal stretching causes rupturing
- All hardness gradients ruptured at same location and time
Secondary Results

- 3d Results corresponded to axi-symmetric models
- Brass material validated to 0.08% error
Conclusions

- Space between the back of the case and the Bolt Face causes case rupturing
- Weapon head space is measured, case tolerance is limited to -0.006in
- Head space gauges measured in 0.002in increments
What can be Learned

- Most cartridge cases are generally the same shape so will behave approximately the same way.