PLASMA TRANSFER ARC FABRICATION OF ENHANCED PERFORMANCE BARRELS

NSAC/NSATC ARMY CONTRACT W15QKN-05-9-0200 -0007 ANTIMATERIEL SNIPER RIFLE BARREL

Program Manager: Neil Lee

NDIA JOINT SERVICES SMALL ARMS SYMPOSIUM

May 16, 2006

MER Corporation

7960 S. Kolb Road Tucson, AZ (520) 574-1980 Fax (520) 574-1983 E-mail kchristou@mercorp.com www.mercorp.com

PRESENTATION OUTLINE

- □ Weapon System Enhancement Requirements
- Solution Approach
- Enabling Technology Plasma Transfer Arc(PTA)
- □ Prior PTA Barrel Work
- □ 50-Cal Antimateriel Sniper Rifle barrel Work
- Technology Future Potential

WEAPON SYSTEM ENHANCEMENT REQUIREMENTS

- Ease of portability
 - Lighter Weight
- Long effective range
 - Hotter propellants
- □ Accuracy (one-shot-one-kill)
 - Barrel Structural Integrity (Reduced Flexure)

SOLUTION APPROACH

- Fabricate a composite barrel
 - liner + over-wrap
- □ Grade the component materials functionally
 - Erosion resistant refractory metal (Mo-Re or Ta- W alloys)
 - Or monolithic ceramic (SiAlON) liner.
 - Hotter propellant requirement
 - Light weight metal (Ti) over-wrap
 - □ Light weight requirement

SOLUTION APPROACH (CONT'D)

- □ Create a continuous interface between the two components
 - Eliminates thermal impedance
 - ☐ Thermal management hotter propellant requirement
 - Provides a continuous and symmetric load transmission
 - □ Structural integrity reduced flexural deflection accuracy requirement

SOLUTION APPROACH (CONT'D)

- Maintain the liner in compression
 - Functionally equivalent to autofrettage
 - Counteracts the propellant gas pressure to reduce stress in the liner
 - □ Counteracts the mechanical stress component of erosion/wear
 - Erosion/wear resistance hotter propellant requirement
 - Reduces stress on the over-wrap for better barrel structural integrity
 - □ Structural integrity improvement accuracy requirement

ENABLING TECHNOLOGY - (PTA)

- Melts and deposits any metal selectively to form a near net shape feature
- Both liner and over-wrap can be formed
- □ Current barrel work is limited to depositing the over-wrap over an existing refractory metal or ceramic liner
- As the over-wrap metal cools down, it forces the liner into a tri-axial state of compression
- The interface between the liner and the over-wrap is continuous
 - Metallurgical bond for refractory metal
 - Perfect overlay for ceramic

PTA SCHEMATIC

PTA SFFF SYSTEM

50 CAL Mo-Re LINER WITH PTA Ti OVER-WRAP Liner is in Compression- Negative 1st Principal Stress

50 CAL Mo-Re LINER WITH PTA Ti OVER-WRAP Liner in Compression- Negative σ_{zz} Stress

50 CAL Mo-Re LINER WITH PTA Ti OVER-WRAP Liner in Compression- Negative 3rd Principal Stress

PRIOR WORK (M249 BARREL)

- M249 with Mo-47.5Re liner and PTA titanium over-wrap
 - SEM images show a continuous interface between liner and over-wrap
 - Tested to about 1800 rounds using 50, 100, and 200 bursts
 - Numerous stoppages due to poor surface finish on the chamber
 - No signs of cook-off at 200 round burst
 - Barrel OD temperature comparable to that of a standard M249 barrel.

M249 REFRACTORY METAL LINER (Mo-Re) WITH PTA Ti OVER-WRAP

As-produced

After machining OD

M249 BARREL LIVE - FIRE TESTING

50-CAL ANTIMATERIEL SNIPER RIFLE BARREL WORK CERAMIC LINER VERSION

- Monolithic Ceramic (SiAlON) Liner
 - In-situ rifling proved feasibility in another project
- □ PTA Ti over-wrap
 - Proved feasibility in depositing titanium without cracking the ceramic
 - Titanium low thermal conductivity may not be a great issue in a sniper rifle

50-CAL MONOLITHIC CERAMIC LINER WITH PTA Ti OVERWRAP

SiAION 50-Cal liner before and after PTA over-wrap

MONOLITHIC CERAMIC LINER WITH PTA Ti OVERWRAP

50-CAL ANTIMATERIEL SNIPER RIFLE BARREL WORK REFRACTORY METAL LINER VERSION

- □ Ta-10W or Mo-47.5Re Liner
 - Mo-47.5Re can be rifled routinely with ECM
 - Ta-10W may be rifled with single point rifling
- □ PTA Ti over-wrap
 - PTA titanium does not affect features in the Ta-10W bore
 - Liner is in compression by virtue of the PTA process
 - Titanium low thermal conductivity may not be a great issue in a sniper rifle

FORMED REFRACTORY METAL LINER

REFRACTORY METAL LINER WITH PTA Ti OVERWRAP

TECHNOLOGY FUTURE POTENTIAL

- □ Form the entire barrel (titanium) over a mandrel to generate in-situ rifling
- Form a ceramic (titanium nitride) layer on the bore of a titanium barrel which grades continuously into the titanium barrel body.
- Generate a lubricious Ti-N alloy layer at the bore
- □ Titanium low thermal conductivity may not be a great issue in a sniper rifle

TECHNOLOGY FUTURE POTENTIAL (CONT'D)

<u>Ti-N Alloy Lubricious Layer Functionally Graded</u> <u>with a Ti64 Part</u>

