

Panel Members

Panel Co-chairs:

- RADM Lenn Vincent, USN (Ret.) Defense Acquisition University, Industry Chair
- Joe Grosson, Managing Director, Enterprise Logistics Technology Office, Lockheed Martin

Speakers:

- Dr. Anil Varma, GE Global Research Center
- Dr. Robert M. Cranwell, Sandia National Laboratories
- MGEN Dennis Jackson, USA (Ret.) Oak Ridge National Laboratory

4/23/2006

Boyd's OODA "Loop"

Note how orientation shapes observation, shapes decision, shapes action, and in turn is shaped by the feedback and other phenomena coming into our sensing or observing window.

Also note how the entire "loop" (not just orientation) is an ongoing many-sided implicit cross-referencing process of projection, empathy, correlation, and rejection.

From "The Essence of Winning and Losing," John R. Boyd, January 1996.

Boyd's OODA "Loop" Simplified

- Observe:
 - Scan the environment and gather data from it
- Orientation:
 - synthesize the data into information & knowledge
- Decide:
 - Evaluate options and select course of action
- Act:
 - Execute and re-cycle through the loop

Result:

Act quickly and continuously to out think and out maneuver the adversary

4/23/2006

How can we apply this to logistics?

- Technology is continuously increasing the flow of data, organizing it into information and knowledge and therefore allowing actionable decisions to be made faster and faster
- We must continuously move around the OODA loop in an endless cycle, constantly reorienting faster than our adversaries

Providing the right capability at the right time with optimal sustainment of the warfighter

Faster and better then the adversary all the time

4/23/2006

Notional Logistics OODA Loop

Observe

- ·C&C
- •Intelligence
- Surveillance
- Readiness

Assessment

•Port &

Connector

Service

Status

Integrated

Planning

Orient

- •Situational Awareness •I & D Level
- DepotsPre-positioned
- Stock
- VisualizationEnvironment
- •TAV & ITV
- •Distribution & Transportation Infrastructure

Decide

- •C2 Logistics Com. & Control w/autonomous reaction •Deploy
- •Deploy sustainment infrastructure
- Preposition
- •Initiate flow of
- Capability
- •Energize the global supply chain & Reverse
- Logistics
- •Ensure TAV & control of connectors

Act

- •Execute &
 Manage the
 Supply Chain of
 materiel, support
 & personnel with
 autonomous
 action
- infrastructure with TAV/ITV & rapid command decisions
- Trigger based stimuli for SCM
- Distance access to maintenance & sustainment knowledge

Visibility, Communication, Dynamic Adjustment

Knowledge Processing &Decision Management

Task Execution

Joint Warfighter In-theater

Logistics Command & Control

Supply Execution

Operational Commander

Knowledge Input

- Mission Profile
- Supply Requirements
- Anticipated movement
- Demand history
- Supplies on-hand
- Retro-grade status
- Support personnel regmts
- ·Real-time usage data

Enablers

- ·Embedded weapons sys. sensors
- Position location
- Transponders
- Logistics Sensor Grid
- Communication
- Data base
- In-situ asset visibility
- Asset tagging
- INFOSEC

Intermediate Staging

- ·In-theater
- Off-shore (Near))
- Off-shore (Far)

Tactical C4ISR

Output Warfighter **C2LOG Command Center** Support

Info Input

- Validate Requirements
- Determine Access route to asset
- Inventory status
- Arrange Transportation
- Track Inventory
 - In-transit visibility
 - Intermediate storage
 - Depot inventory
- Financial Tracking & Mgmt
- Routing of Asset to Warfighter
- Routing of Retrograde
- In-situ Maintenance & Repair
- Contractor Support in Theater
- Supply Effectiveness **Measurement & Improvement**

Enablers

- •IT Infrastructure
- Data mining
- Communications
- •TAV (RFID,...)

Simulation, Modeling, Neural **Programming, Demand Forecasting**

Supply Chain Management

Command Center

- Electronic Requisition **Processing**
- and Ordering SCM
 - Connectivity with depots, warehouses
 - OEMs, Vendors, DLA, ...
 - Demand status & prediction
 - Asset Visibility
 - Prioritizing
 - SCM Over-rides
 - Optimization of shipping routes

3PLs & 4PLs

Performance Based Logistics

PSIs, DLA, Depots, Arsenals, ICPs

- Repair, Return or Replacement
- Maintenance (O,I,D)
- Upgrade or modernize
- Failure Monitoring & Assessment

Visibility, Communication, **Dynamic Adjustment**

Knowledge Processing & Decision Management

Task Execution

Logistics Technology Enablers

- Diagnostics, Prognostics and health management
 - Embedded sensors & algorithms
 - Performance & Failure Prediction
 - Anomaly Detection
- Modeling, simulation, forecasting, trending
 - •Adaptive Logistic Models, Interoperability, Integration of Heterogeneous Processes
- Decision Support
 - •Data/Information fusion, Classification, Ontology, Strategic Decision Support, Mission Planning, Intelligent Agents, Optimization
- Common operating picture visualization environments; situational awareness
 - •Geospatial, Audio/Visual Integration, Common Intelligence Picture, Knowledge Representation, Supervisory Decision Making
- Information Assurance & Communications
 - •Wearable Devices, Smart Cards, Biometrics, WI-FI, PKI, VOIP, Speech Recognition, bandwidth usage reduction

Logistics Technology Enablers

Automated Identification Technology beyond RFID

•Electrical signature analysis, system processes, data base management, and integration for TAV & ITV

Logistics Enterprise Architectures

•Enterprise Services, Web Services, Public Sector Vertical Applications, Open Source Technologies, Information Extraction, Business Process Monitoring & Automation, ERP; Data Portals and portal services

Knowledge systems & coalition force knowledge sharing

•Adaptive Logistic Models, Information Extraction, Semantic Web, XBRL, XML/SOAP Engines

Automated Decision Tools

- •Data/Information fusion, Collaboration, Classification, Ontology, Strategic Decision Support, Mission Planning, Intelligent Agents, Optimization, Forecasting
- •Other: design for maintenance free operation, embedded AIT, Warehouse Automation, in-theater support, e.g. MULE

The Equivalence Principle demands the balanced application of logistics technology to persevere and prevail

"Logistics... the bridge between the national economy and the combat forces." (from Eccles, *Logistics in the National Defense*).