Prognostics & Health Management at GE

Dr. Piero P.Bonissone

Industrial AI Lab

GE Global Research

Prognostics & Health Management (PHM)

• Expert-on-Alert (EOA[™]):A Commercial Success Story

• PHM Technology Development and Applications

Expert-on-Alert (EOA[™]): A Commercial Success Story for GE Rail

Complex, Mobile, Repairable System...

- 24 Microprocessor Controllers
- <u>No new sensors</u> (used existing controllers' sensors)
- 200,000 parts
- 100,000+ miles/year
- Extreme operating environment
- 20 years of life
- Continuous Field Modifications (multi/year)
- 3-4 Scheduled Shop-visits/year
- 4-5 Un-Scheduled Shop-visits /year
- 2-3 Overhauls over life
- Distributed Maintenance Environment

History of Expert-On-Alert[™] (EOA[™])

- Launched 1998 : 200 locomotives
- 1999 : 600 locomotives
- 2000 : **1000 1500** locomotives
- 2001 :
- 2002 :
- 2003 : 4000 locomotives :

- CBR + BBN
- -CBR
- CBR + JDPAD(Rule Based):
- CBR + JDPAD + Data Mining
- Process Automation : Tools + 30% Auto RX
- Improved Rx Precision,
 - Vastly increased parameter availability
 - Improved Rx Precision and larger fleet coverage

2004-05: 5000+ locomotives

Expert-on-Alert (EOATM): Proactive Maintenance

Page 3

EOA™ Overview

- Failure reduction... "Fix right the first time"
- Fewer shoppings... "Fix out of the shop"
- Shop efficiency... "Expert Diagnostics"

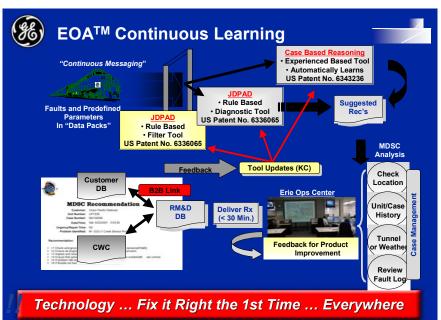
Enabled By... • Lower parts cost... "Correct part removal"

- Wireless, real time data management
- · Expert diagnostic tools & rules
- Closed loop diagnostic system & process
- Seamless B2B integration with maintenance systems

Benefits Proven On Over 4.000 Locomotives

MCES 2004 October 26 - 28, 2004

- Solution: Hybrid rule-based & case based reasoners predicting incipient locomotive failures. The reasoner uses a workflow system to specify best suggested repair procedure and notify the RR
- Benefits: Decrease number of road failures and increase % utilization. Change unscheduled maintenance events into scheduled ones.

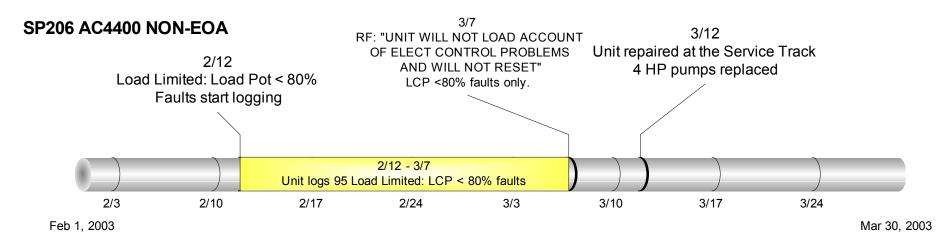


Personnel reduced from 150 to 2

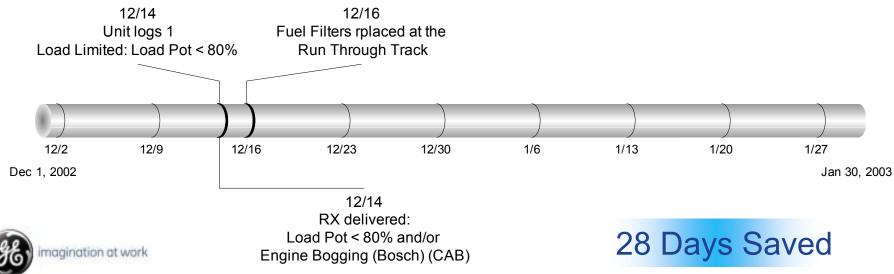
Recommendations

Sensor Data Maintenance Logs Repair Data Fuzzy + CBR + RBR

 Key Goal: Using existing locomotive sensors and wireless communication system, provide railroads with conditionbased maintenance and repair service (advanced failure notifications to schedule corrective repair)


Sample Case

						D	_						~	BR			
						II								LA	_		
						R								O D	I		
						E !								WF	N		
	Unit	Occur		Occur	Reset	Loco C (Main							Misc.	
ID	Numb.	Date	Code	Hours	Hours	Sped T 1	I Sped	Volt	Amps	Fld	Tmp	Tmp	LE	RN	FO	Status	SE Fault Description
AB	8894	03-mar-1990	6 4531	80377 6	1 80377 61	30.7 R	8 99!	5 8		o 0	176	5 200	 M 1	E O O		 6 В	FDP Or FCFP RU Is Bad
AB	8894	03-mar-1996				6.2 F		5	16				ME		6	в	FDP Or FCFP RU Is Bad
AB	8894	03-mar 1990				0.0 C s		3	0				RE		F		Intake Manifold Air Too
AB	8894	04-mar-1996						7	14				ME		-		FDP Or FCFP RU Is Bad
AB	8894	05-mar-1996				14.9 F		7	14				ME			В	FDP Or FCFP RU Is Bad
AB	8894	05-mar 1990				22.4 F		399		112						ABMS	Load Limited:
AB	8894	05-mar 1990				22.4 F		548		242						AB M S	Fault Reset While In Le
AB	8894	05-mar 1990				35.1 F		9	4				ME			в В	FDP Or FCFP RU Is Bad
AB	8894	05-mar 1990				4.3 F		7	0				RE			 AB	TM Plug Attempted At To
AB	8894	06-mar-1996				4.5 F		30	-	273						AB M S	TM #3 Stalled (High Cur
AB	8894	06-mar-1996				0.0 F		32		316						AB M S	TM #2 Stalled (High Cur
AB	8894	06-mar-1990				0.0 F		30		293						AB M S	TM #2 Stalled (High Cur TM #5 Stalled (High Cur
AB	8894	06-mar-1996				0.0 F		35		344						AB M S	TM #5 Starred (High Cur TM #5 Exceeded 240 C at
AB	8894	06-mar-1990				0.0 F		35		343						AB M S	TM #5 Exceeded 240 C at
AB	8894	06-mar-1990				0.0 F		35		345						AB_M_S	TM #4 Exceeded 240 C at
AB	8894	06-mar-1996				0.0 C		6	0				RE			AB	Fault Reset While In Le
AB	8894	06-mar-1990				22.7 F		8	5				ME			_B	FDP Or FCFP RU Is Bad
AB	8894	06-mar-1990				0.0 F		3	1				ME			_B	Unable To Load: Check S
AB	8894	07-mar-1990				29.1 F		8	4				ME			_B	FDP Or FCFP RU Is Bad
AB	8894	07-mar-1996				0.0 F		10	955				ΜE			AB_M_S	T/L 8 And 9 Changed Whi
AB	8894	07-mar-1996				0.0 C :		5	3				RE			AB	Fault Reset While In Le
AB	8894	07-mar-1996				18.6 F		8	9				ΜE		6	_B	FDP Or FCFP RU Is Bad
AB	8894	07-mar-1996				0.0 C :		3	1				RE				Intake Manifold Air Too
AB	8894	08-mar-1996				0.0 C		2	0				RE		F		Intake Manifold Air Too
AB	8894	08-mar-1996				0.0 C :		2	1				RE		F		Intake Manifold Air Too
AB	8894	08-mar-1990				29.8 F		8	1				ME			_B	FDP Or FCFP RU Is Bad
AB	8894	08-mar-1996				0.0 R		34		296						AB_M_S	TM #3 Stalled (High Cur
AB	8894	08-mar-1996				0.0 R		33	825	290	171	181	МE	FΟ		AB_M_S	TM #2 Stalled (High Cur
AB	8894	08-mar-1996	6 452A	80500.60	80514.63	0.0 R 4	885	36	994	293	171	181	ME	FΟ	6	AB_M_S	TM #1 Stalled (High Cur
AB	8894	08-mar-1996	6 49CC	80506.80	80514.61	0.0 C :	s 0	3	0	0	173	181	RE	00	F		Intake Manifold Air Too
AB	8894	08-mar-1996	6 453D	80518.68	80518.68	38.3 F	3 989	10	3	0	174	197	ME	00	6	_B	FDP Or FCFP RU Is Bad
AB	8894 2	2501 1 8	08-MA	R-1996	BRG_XY -	Braking 1	Resisto	or Gri	.d						3	K=StkY=R	#1 STACK ALL GRIDS BURNT-REPL


imagination at work

Fault codes collected over 5 days for loco #8894, leading to a repair recommendation on March 8 1996

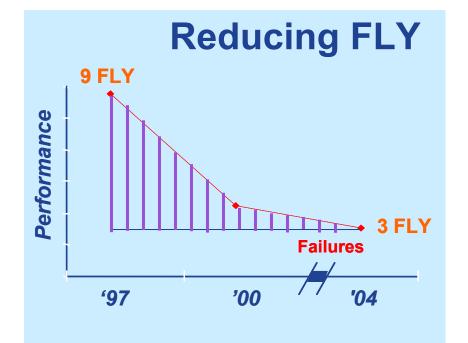
Customer Impact - 1

SP250 AC4400 EOA

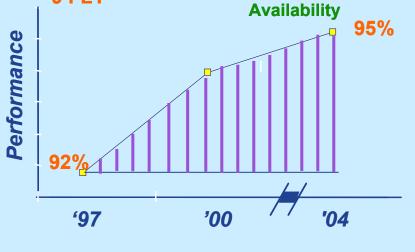
Dr. Piero P. Bonissone – General Electric Global Research

Application Walkthrough

	·		00/04/2003	FW 22		
		GEUT	-	-	-	-
	<u>CONTRACT</u>	RF/LY - DASH 9	2.54	2.96	3.08	3.51
		Avg. Daily RF	13	14.14	12.54	13.94
	BUSINESS METRICS	Repeat RF Ratio - 14 Day	7.69 %	15.15 %	12.54 %	13.23 %
		Repeat RF Ratio - 30 Day	15.38 %	28.28 %	22.79 %	27.37 %
		EOA Service Availability	52 %	52 %	52 %	53 %
		EOA System Availability	52 %	52 %	52 %	53 %
	EOA AVAILABILITY	GE To UP Connectivity	: 	99 %	99 %	100 %
JP		GE Offboard System Availability	: 	99 %	99 %	99 %
		Location Effectiveness	61.54 %	70.11 %	70.85 %	68.68 %
	EXECUTION	Implementation Effectiveness for FW 21	NA	91.87 %	94.32 %	90.6 %
		Case Conversion	-	46.32 %	46.49 %	52.33 %
		Response Time	-	7.13 Mins	8.33 Mins	12.78 Mins
	MDSC	Rx Accuracy	-	-	91 %	93 %
		Tool Accuracy	-	95.87 %	92.13 %	89.71 %
		Tool Coverage		80.13 %	83.02 %	61.55 %
	EOB AVAILABILITY	EOB System Availability	72.3 %	70.5 %	73.6 %	76.9 %


Case Creation Case Equipment Analysis

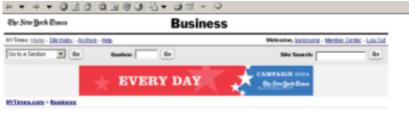
Maintenance History Corrective Action


Feedback

Metrics

Benefits from PHM Technologies *Expert On Alert (EOA) system at GE Rail*

Increasing Availability



Failures per Locomotive per Year [FLY] - Cost for track-blockage & labor per FLY: \$17K per FLY -Cum.FLY reduction [1997-2004]: 6 FLY	Locomotive Availability -Value of 1% increase in availability per locomotive: \$3.5K/loco -Cum.Availability Increase [1997-2004]: 3%
-Cum.FLY cost reduction [1997-2004]: \$102K/loco	-Cum.Value increased Availability per loco.[1997-2004]: \$10.5K/loco
-Cum.FLY cost reduction over fleet [1997-2004]:~ \$300MM (for average fleet size 3,000 locomotives)	-Cum.Value of Availability over fleet [1997-2004]: ~ \$30MM (for average fleet size 3,000 locomotives)

Bridging the Gap: UP problems with 'Hot Trains' for UPS

(NYT: March 31, 2004)

Freight-Car Congestion Is Worrying Union Pacific

Cars and trucks headed toward downtown Houston waiting for a Union Pacific train to go through.

By DON PHILLIPS

Published: March 31, 2004

F reight congestion has spread across the <u>Union Pacific</u> railroad system, especially in Southern California and the Southwest, raising concerns about delays in agricultural shipments and international trade if a solution is not found before the rail freight rush begins in late summer and fall.

ARTICLE TOOLS		
E E-Hall This Article		
& Pater-Friendy/form	tool.	
Most E-Maileri Artica	es.	
Reports & Permissio	250	
LADINGTINGT OF	britta.	
TIMES NEWS TRACKS		
telecolt or Manual		
TINES NEWS TRACK		
TIMES NEWS TRACKS		,
TENES NEWS TRACKS	A Anala Create	

"Tonight, tonight, won't be just any night..."

Advertisemen

PLAN A NIGHT AT THE THEATER. Find a Show Read Reviews Buy Tackets

... U.P.S. has begun a new coast-to-coast premium service that requires high-speed train shipment to Dallas, Atlanta and New York. The New York train dispatched from Los Angeles on Tuesday is particularly timesensitive because it is scheduled to arrive in time for package delivery on Friday rather than the following Monday. To keep the train on time on the busy, largely single-track segment

between Los Angeles and El Paso, called the Sunset Route, railroad dispatchers clear other trains onto sidings far ahead of the U.P.S. train, sometimes hours ahead. At times, trains are stalled because their crews have reached the maximum tour of duty under federal law of 12 hours, and no rested crews are available. It can take a week to sort out such situations. "The hot trains are a challenge, particularly on the Sunset," said Robert W. Turner, Union Pacific's senior vice president for corporate relations. ...

... This operating data, reported by rail companies to the Association of American Railroads, gives evidence of Union Pacific's problems. Freight cars on line, which can be used as a measure of congestion, were at a high of 325,634 in the week ended March 19. The average time for a freight car in yards has also spiked upward. At West Colton, the major yard for Southern California, the average time was up to 49.0 hours in the latest week from 30.8 hours in the first quarter of 2003. Average train speed, which was 24.8 m.p.h. in the first quarter of 2003 and 22.1 m.p.h. in February, was down to 21.5 m.p.h. in the week ended March 19.

This is more important than the slight differences might indicate. Mr. Turner said Union Pacific estimated that <u>each decrease of one</u> <u>mile an hour required 250 extra locomotives</u>, 5,000 extra freight <u>cars and 180 extra employees</u> to make up for the decrease in

Dr. Piero P. Bonissone – General Electric Global Research

PHM Technology

Objective

Develop algorithms for asset health assessment to support fleet-wide PHM

Goal

Address fleet-level metrics, such as safety, maintenance costs, asset readiness, reduced inventory, and operational success

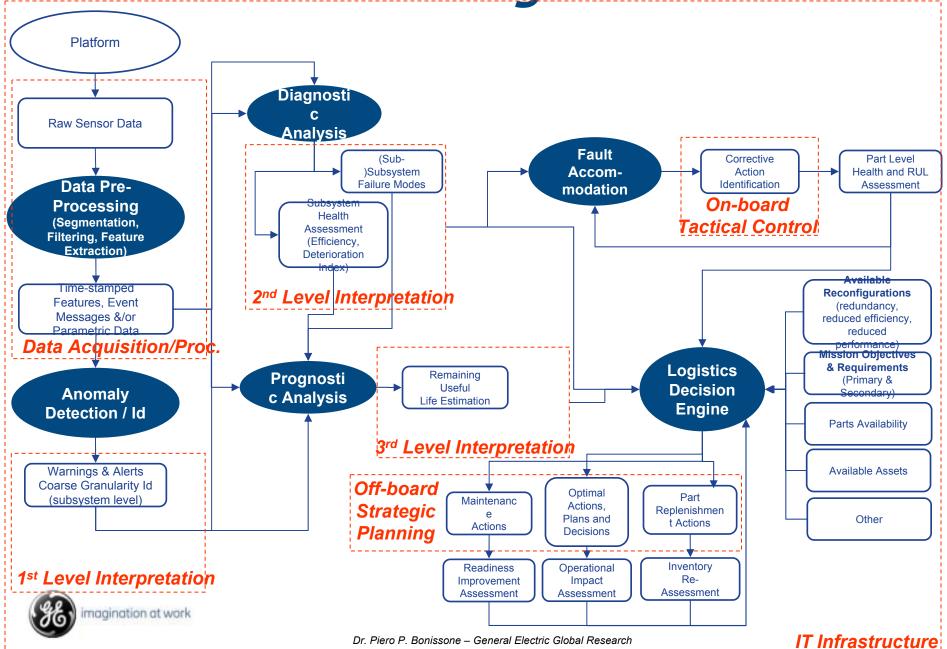
Constraints

- No new sensors (using existing sensor-suite in legacy fleet)
- Platform-agnostic (data-driven approach not requiring platform-specific knowledge)

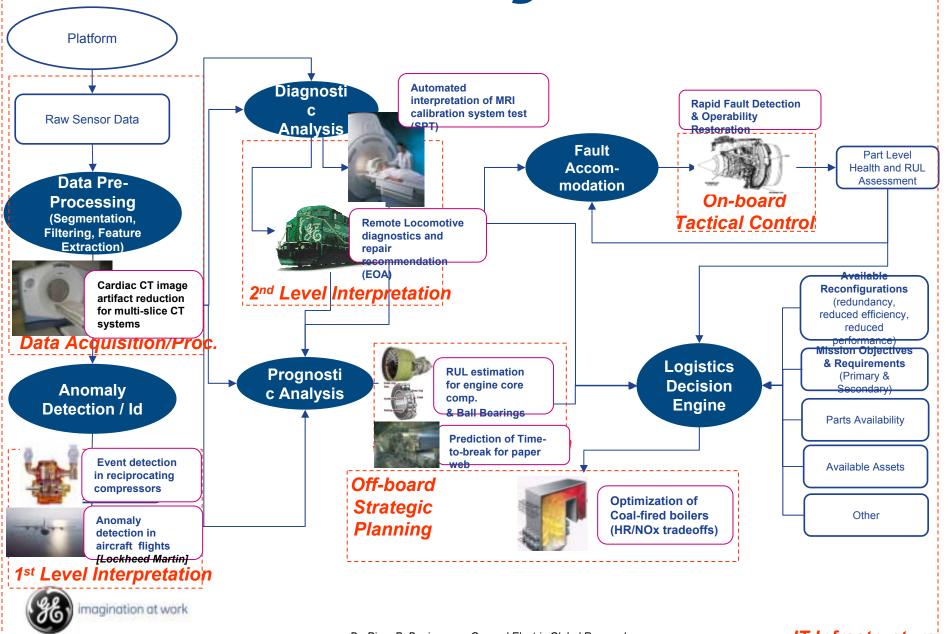
Approach

Anomaly Detection

- Provide early warning for incipient faults by characterizing regions of operational normality
- Identify assets deviating from these regions

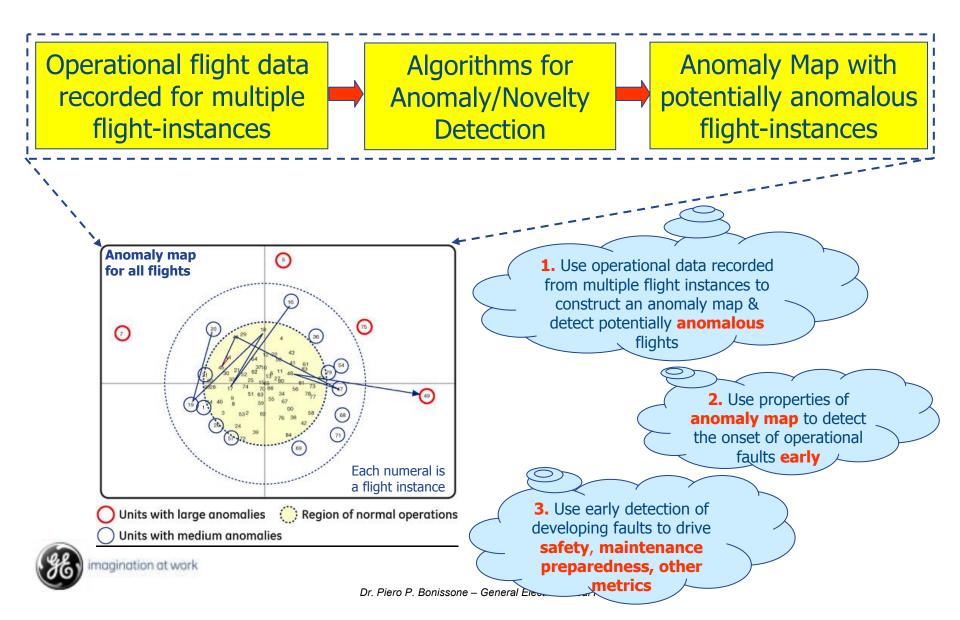

• Diagnostics and Prognostics

- Provide assessment of sub-system health & remaining useful life for asset


Logistics Decision Support

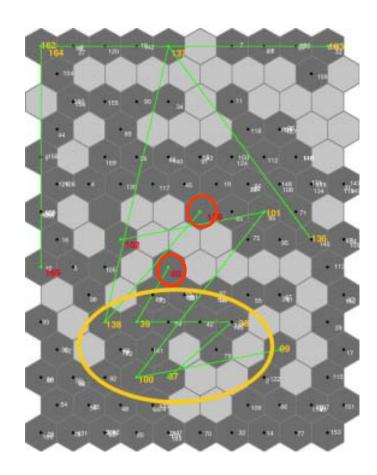
- Select and deploy optimal decision across entire logistics infrastructure

PHM: The Big Picture

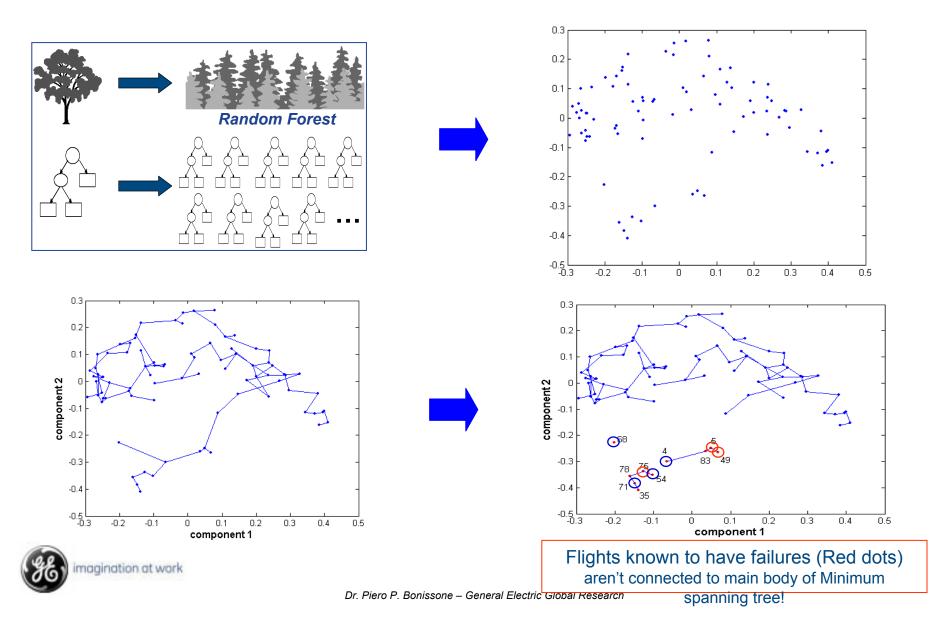


PHM: The Big Picture

IT Infrastructure


Anomaly Detection Algorithms for PHM

Self-Organizing Maps for Diagnostic and Prognostic Analyses

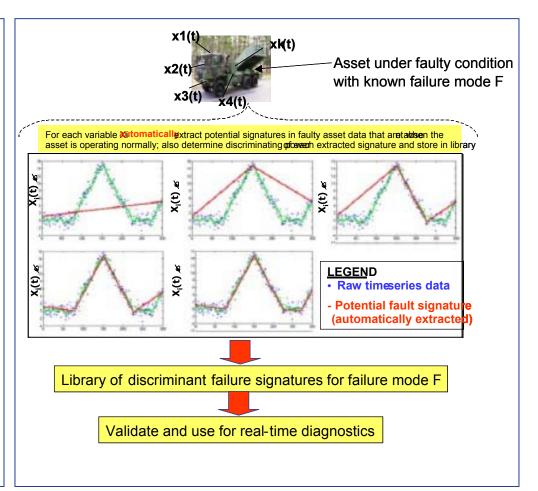

- 1. Train SOM on normal data to obtain normal operating envelope
- 2. Declare a case novel if its projection to the map falls outside the envelope

Flights known to have failures (Red numerals) generate trajectories that pass through common region

Random Forest Unsupervised Clustering for Novelty Detection

Diagnostics based on Automated Fault Signature extraction & Pattern Recognition

Key Goal


Automated extraction and application of fault signatures from time-series data for asset diagnostics Solution

Automated signature extraction and pattern recognition based detection

- Use knowledge of existing fault condition and failure mode of asset to extract and learn potential fault signatures from multiple time-series variables
- Perform analyses to retain most discriminating set of signatures
- Apply pattern recognition techniques to locate presence or absence of failure-mode in real-time using library of signatures learned.

Benefits

- Advanced diagnostic ability
- Potential prognostic ability

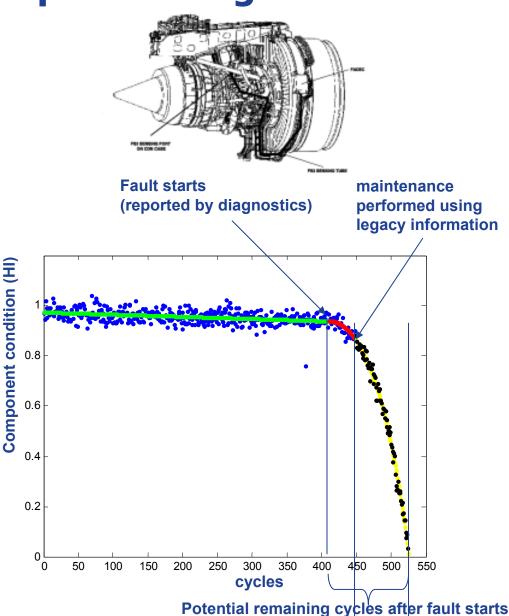
GE Aviation/DARPA: Equipment Prognostics

• Key Goal:

 Estimate remaining equipment life in presence of fault

Solution

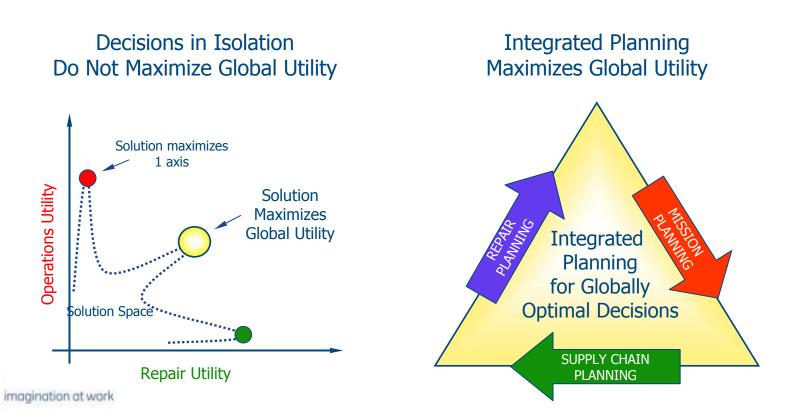
- 1. Physics and Experience-Based Reasoner
- Apply detailed materials-based damage propagation model
- Apply data-driven damage propagation model
- Fuse estimates for reduced uncertainty and improved accuracy


2. Derive Operations-based Equipment Health

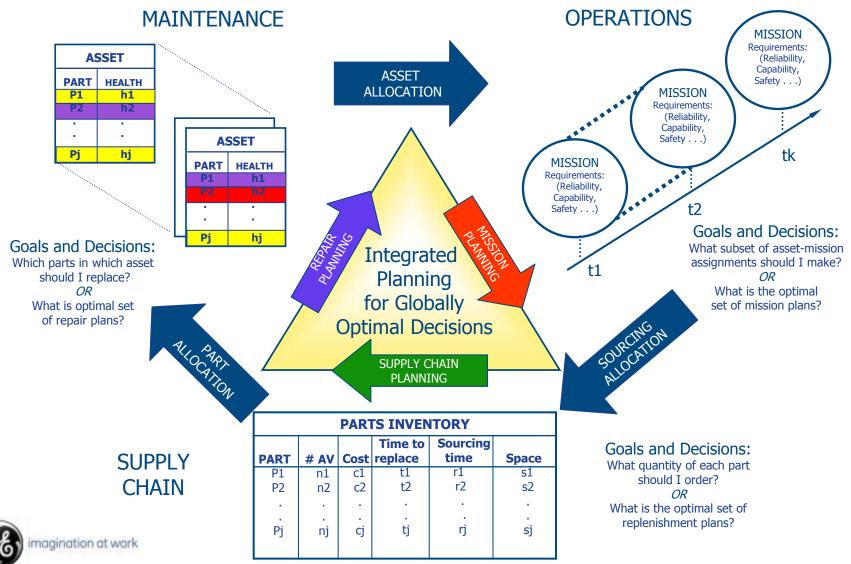
- Convert proximity to operational margins into equivalent equipment health
- Track and extrapolate health when fault is present

Benefits

- Reduced maintenance cost
- Fewer unscheduled maintenance



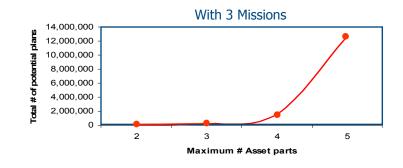
Potential remaining cycles

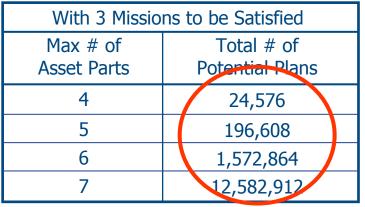

Decision Making and Health Management

"Health Management is the capability to make appropriate decisions about maintenance actions based on diagnostics/prognostics information, available resources and operational demand."

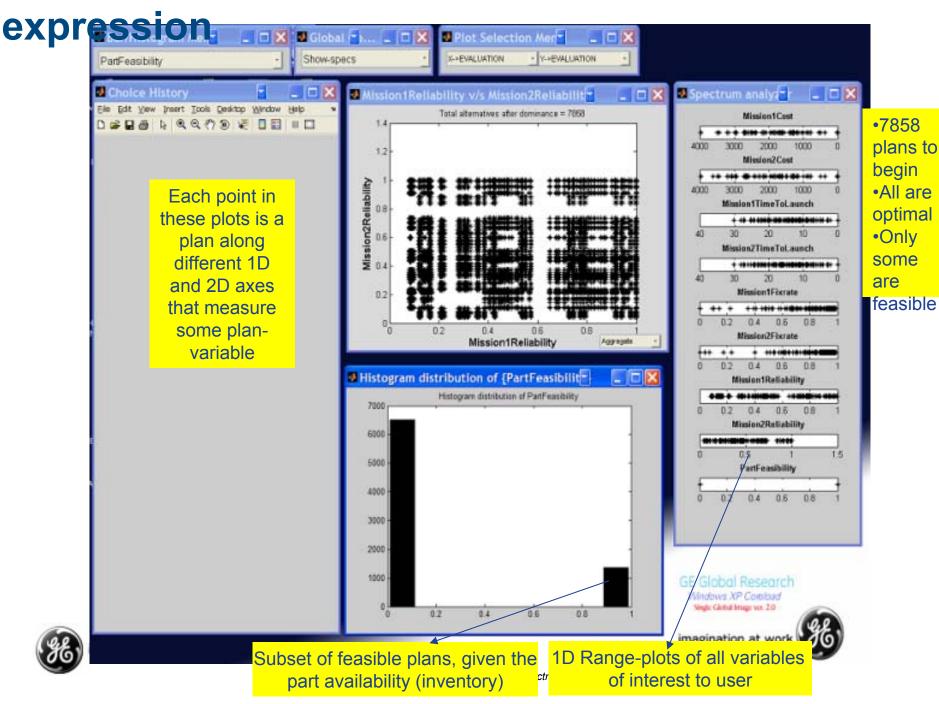
- Andy Hess, PHM Lead for Air Systems on JSF

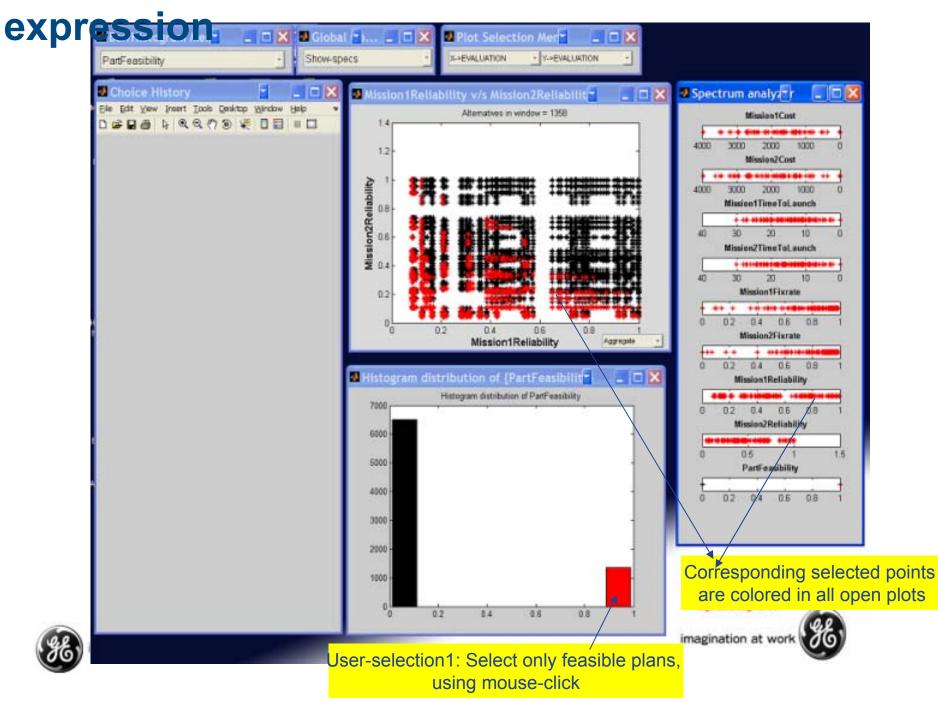
Decision Making and Health Management

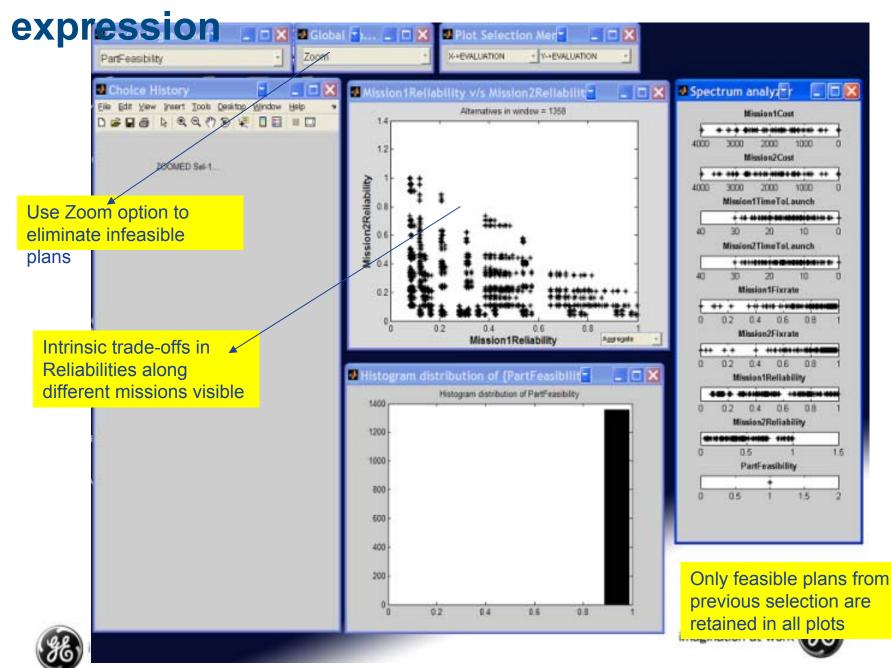

Dr. Diara D. Baniasana Canaval Flashria Clahal Basaarah

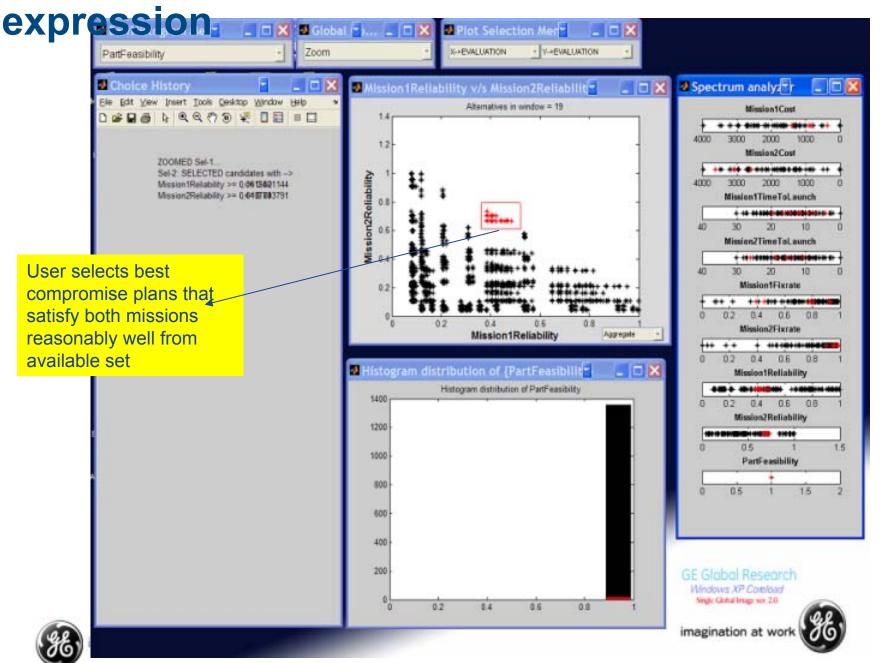

Integrated Decision Making in PHM: A Closer Look

Advantages of Integrated Planning

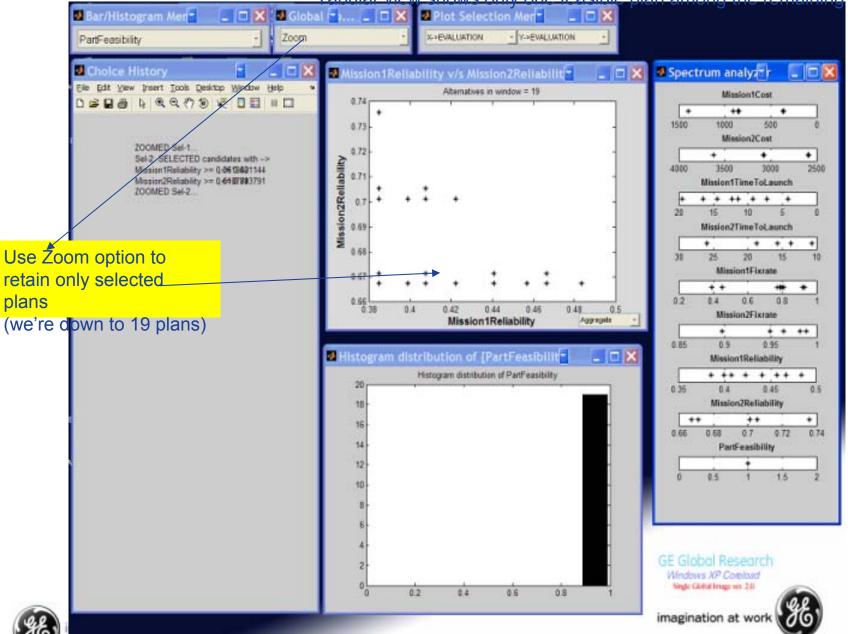

Disadvantages of Integrated Planning

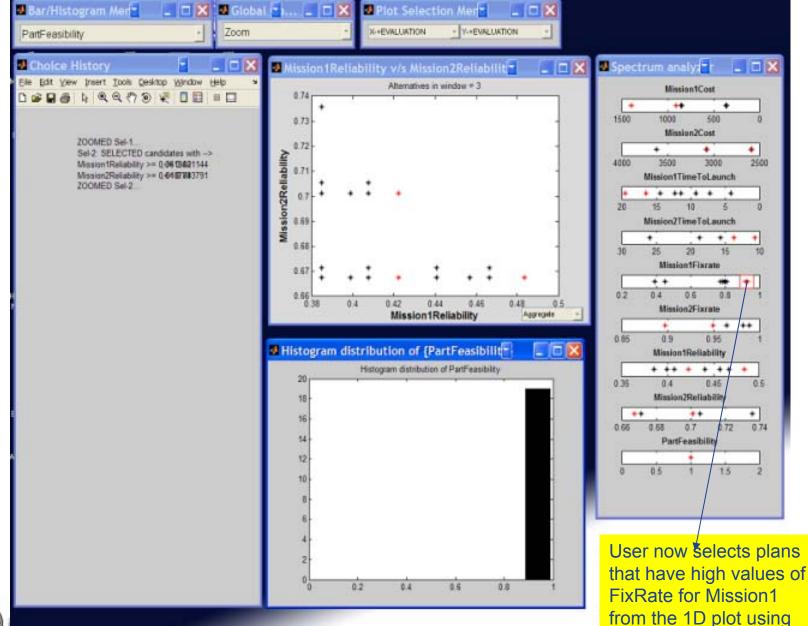

- Maximal global utility across all 3 platforms
- Increased number of satisfiable missions, mission reliability, safety, mission success rate and part availability
- Reduced sustainment costs, turnaround times, and spare requirements





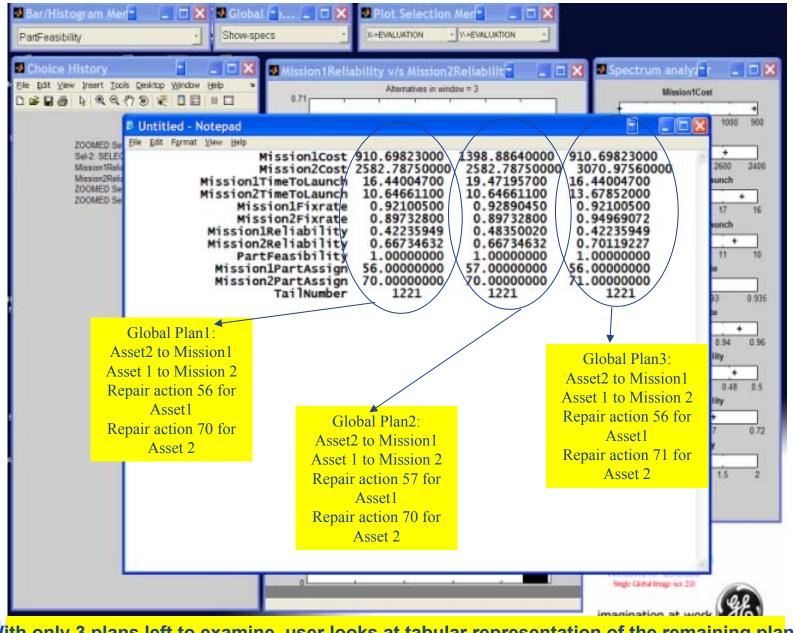
Emphasizes, the need for decision support





Dr. Piero P. Bonissone - General Electric Global Research

Tabular view shows only one feasible plan among the remaining ones



86

Dr. Piero P. Bonissone - General Electric Global Research

mouse (we're down to 3 plans)

ith only 3 plans left to examine, user looks at tabular representation of the remaining plans and selects one for deployment to maintenance and operations platform

Conclusions

- Developed broad set of algorithms for asset health assessment to support fleet-wide PHM
- Addressed various fleet-level metrics, such as safety, maintenance costs, asset readiness, reduced inventory, and operational success
- No new sensors (using existing sensor-suite in legacy fleet)
- Platform-agnostic (data-driven approach not requiring platform-specific knowledge)
- Proven Commercial Success for GE Rail: EOA™
- Extending PHM technology for military platforms under GE/LM Shared Vision

